Association of β2 microglobulin level and glomerular filtration rate in patients with acute leukemia after hematopoietic stem cell transplantation

Submitted: 17 December 2022
Accepted: 20 January 2023
Published: 16 February 2023
Abstract Views: 1153
PDF: 342
HTML: 12
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Hematopoietic stem cell transplantation is a life-saving therapy in patients suffering from acute leukemia. However, kidney complications developed after performing hematopoietic stem cell transplantation can affect the course and prognosis of the disease in patients with acute leukemia. This study is aimed at assessing the functional status of the kidneys in patients with acute leukemia who have undergone hematopoietic stem cell transplantation. The study has observed a group of patients with acute lymphoblastic leukemia and acute myeloid leukemia who have undergone hematopoietic stem cell transplantation. It has been discovered that β2 microglobulin is a sensitive method of analyzing renal function, with the β2 microglobulin threshold urine level not exceeding 0.3 mg/L. The complex diagnostics of kidney function in hematopoietic stem cell transplantation recipients has given the opportunity to identify the relationship between increased β2 microglobulin levels and decreased glomerular filtration rate. It has been determined that β2 microglobulin is a biomarker of renal disorders. The obtained data have showed that β2 microglobulin can be used as a diagnostic marker of reduced kidney function.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

PlumX Metrics

PlumX Metrics  provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

Citations

Sureda A, Bader P, Cesaro S, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant 2015;50:1037-56. DOI: https://doi.org/10.1038/bmt.2015.6
Niederwieser D, Baldomero H, Szer J, et al. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant 2016;51:778-85. DOI: https://doi.org/10.1038/bmt.2016.18
Passweg JR, Baldomero H, Chabannon C, et al.; European Society for Blood and Marrow Transplantation (EBMT). Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years. Bone Marrow Transplant 2021;56:1651-64. DOI: https://doi.org/10.1038/s41409-021-01227-8
Gratwohl A, Pasquini MC, Aljurf M, et al. Worldwide Network for Blood and Marrow Transplantation (WBMT) (). One million haemopoietic stem-cell transplants: a retrospective observational study. The Lancet Haematol 2015;2:e91-e100. DOI: https://doi.org/10.1016/S2352-3026(15)00028-9
Styczyński J, Tridello G, Koster L, et al.; Infectious Diseases Working Party EBMT. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant 2020;55:126-36. DOI: https://doi.org/10.1038/s41409-019-0624-z
Foord AM, Cushing-Haugen KL, Boeckh MJ, et al. Late infectious complications in hematopoietic cell transplantation survivors: a population-based study. Blood Adv 2020;4:1232-41. DOI: https://doi.org/10.1182/bloodadvances.2020001470
Poonsombudlert K, Kewcharoen J, Prueksapraopong C, Limpruttidham N. Engraftment syndrome and acute graft-versus-host disease: a meta-analysis. Hawaii J Health Soc Welf 2020;79:194-201.
Xia Y, Qin H, Yang J. Hepatic veno-occlusive disease development in the hematopoietic stem cell transplantation patients: incidence and associated risk factors, a meta-analysis. Eur J Gastroenterol Hepatol 2021;33:872-84. DOI: https://doi.org/10.1097/MEG.0000000000001802
Kemmner S, Verbeek M, Heemann U. Renal dysfunction following bone marrow transplantation. J Nephrol 2017;30:201-9. DOI: https://doi.org/10.1007/s40620-016-0345-y
Mii A, Shimizu A, Yamaguchi H, Tsuruoka S. Renal complications after hematopoietic stem cell transplantation: role of graft-versus-host disease in renal thrombotic microangiopathy. J Nippon Med Sch 2020;87:7-12. DOI: https://doi.org/10.1272/jnms.JNMS.2020_87-102
Wu NL, Hingorani S, Cushing-Haugen KL, et al. Late kidney morbidity and mortality in hematopoietic cell transplant survivors. Transplant Cell Ther 2021;27:434.e1-434.e6. DOI: https://doi.org/10.1016/j.jtct.2021.02.013
Murzakhmetova A, Kemaykin V, Kuttymuratov A, et al. Evaluation of kidneys’ functional state in acute lymphoblastic leukemia patients following hematopoietic stem cell transplantation. Open Access Maced J Med Sci 2022;10:937-43. DOI: https://doi.org/10.3889/oamjms.2022.8847
da Silva JB, de Melo Lima MH, Secoli SR. Influence of cyclosporine on the occurrence of nephrotoxicity after allogeneic hematopoietic stem cell transplantation: a systematic review. Rev Bras Hematol Hemoter 2014;36:363-8. DOI: https://doi.org/10.1016/j.bjhh.2014.03.010
Sedhom R, Sedhom D, Jaimes E. Mini-review of kidney disease following hematopoietic stem cell transplant. Clin Nephrol 2018;89:389-402. DOI: https://doi.org/10.5414/CN109276
Murzakhmetova AO, Kemaikin VM, Ainabay AM, et al. Acute renal disorder in patients with acute leukemia after hematopoietic stem cell transplantation: a series of clinical cases. Oncol Radiol Kazak 2022;3:32-6. DOI: https://doi.org/10.52532/2663-4864-2022-3-65-32-36
Renaghan AD, Jaimes EA, Malyszko J, et al. Acute kidney injury and CKD associated with hematopoietic stem cell transplantation. Clin J Am Soc Nephrol CJASN 2020;15:289-97. DOI: https://doi.org/10.2215/CJN.08580719
Abramson MH, Gutgarts V, Zheng J, et al. Acute kidney injury in the modern era of allogeneic hematopoietic stem cell transplantation. Clin J Am Soc Nephrol CJASN 2021;16:1318-27. DOI: https://doi.org/10.2215/CJN.19801220
Sehgal B, George P, John MJ, Samuel C. Acute kidney injury and mortality in hematopoietic stem cell transplantation: a single-center experience. Indian J Nephrol 2017;27:13-9. DOI: https://doi.org/10.4103/0971-4065.177138
Ellis MJ, Parikh CR, Inrig JK, et al. Chronic kidney disease after hematopoietic cell transplantation: a systematic review [published correction appears in Am J Transplant. 2009 Apr;9(4):865. Kambay, M [corrected to Kanbay, M]]. Am J Transplant 2008;8:2378-90. DOI: https://doi.org/10.1111/j.1600-6143.2008.02408.x
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1-266.
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017;389:1238-52. DOI: https://doi.org/10.1016/S0140-6736(16)32064-5
Argyropoulos CP, Chen SS, Ng YH, et al. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med (Lausanne) 2017;4:73. DOI: https://doi.org/10.3389/fmed.2017.00073
Sedighi O, Abediankenari S, Omranifar B. Association between plasma Beta-2 microglobulin level and cardiac performance in patients with chronic kidney disease. Nephrourol Mon 2014;7:e23563.
Scarr D, Bjornstad P, Lovblom LE, et al. Estimating GFR by serum creatinine, cystatin c, and β2-microglobulin in older adults: results from the Canadian study of longevity in type 1 diabetes. Kidney Int Rep 2019;4:786-96. DOI: https://doi.org/10.1016/j.ekir.2019.02.010
Li L, Dong M, Wang XG. The implication and significance of beta 2 microglobulin: a conservative multifunctional regulator. Chin Med J (Engl) 2016;129:448-55. DOI: https://doi.org/10.4103/0366-6999.176084
Inker LA, Coresh J, Sang Y, et al.; CKD Biomarkers Consortium. Filtration markers as predictors of ESRD and mortality: individual participant data meta-analysis. Clin J Am Soc Nephrol 2017;12:69-78. DOI: https://doi.org/10.2215/CJN.03660316
Clinical Protocol of the Ministry of Health of the Republic of Kazakhstan. Available from: https://diseases.medelement.com/
National Kidney Foundation. Available from: https://www.kidney.org
Bianchi C, Donadio C, Tramonti G, et al. Reappraisal of serum beta2-microglobulin as marker of GFR. Renal Fail 2001;23:419-29. DOI: https://doi.org/10.1081/JDI-100104725
Yue L, Pan B, Shi X, Du X. Comparison between the beta-2 microglobulin-based equation and the CKD-EPI equation for estimating GFR in CKD patients in China: ES-CKD study. Kidney Dis (Basel, Switzerland) 2020;6:204-14. DOI: https://doi.org/10.1159/000505850
Kanduri SR, Cheungpasitporn W, Thongprayoon C, et al. Incidence and mortality of acute kidney injury in patients undergoing hematopoietic stem cell transplantation: a systematic review and meta-analysis. QJM 2020;113:621-32. DOI: https://doi.org/10.1093/qjmed/hcaa072
Fried L. When increase in serum creatinine doesn’t imply kidney damage. Clin J Am Soc Nephrol 2020;15:304-5. DOI: https://doi.org/10.2215/CJN.14521119
Yang B, Yu R, Cai L, et al. Haploidentical versus matched donor stem cell transplantation for patients with hematological malignancies: a systemic review and meta-analysis. Bone Marrow Transplant 2019;54:99-122. DOI: https://doi.org/10.1038/s41409-018-0239-9
Meybodi MA, Cao W, Luznik L, et al. HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis. Blood Adv 2019;3:2581-5. DOI: https://doi.org/10.1182/bloodadvances.2019000614
Wieduwilt MJ, Metheny L, Zhang MJ, et al. Haploidentical vs sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia. Blood Adv 2022;6:339-57. DOI: https://doi.org/10.1182/bloodadvances.2021004916
Zhang A, Wang B, Yang M, et al. β2-microglobulin induces epithelial-mesenchymal transition in human renal proximal tubule epithelial cells in vitro. BMC Nephrol 2015;16:60. DOI: https://doi.org/10.1186/s12882-015-0057-x
Kärki M, Näntö-Salonen K, Niinikoski H, Tanner LM. Urine beta2-microglobulin is an early marker of renal involvement in LPI. JIMD Rep 2016;25:47-55. DOI: https://doi.org/10.1007/8904_2015_465
Sedighi O, Abediankenari S, Omranifar B. Association between plasma beta-2 microglobulin level and cardiac performance in patients with chronic kidney disease. Nephro-Urol Mon 2015;7:e23563. DOI: https://doi.org/10.5812/numonthly.23563
Vorob’ev VG, Trunova EM, Borovkov NN. Beta 2-mikroglobulin v diagnostike spetsificheskogo porazheniia pochek pri ostrykh leĭkozakh [Beta 2-microglobulin in the diagnosis of specific involvement of the kidneys in acute leukemias]. Lab Delo 1990;10:31-4. [In Russian].
Tsimberidou AM, Kantarjian HM, Wen S, et al. The prognostic significance of serum beta2 microglobulin levels in acute myeloid leukemia and prognostic scores predicting survival: analysis of 1,180 patients. Clin Cancer Res. 2008;14:721-30. DOI: https://doi.org/10.1158/1078-0432.CCR-07-2063
Stella-Holowiecka B, Czerw T, Holowiecka-Goral A, et al. Beta-2-microglobulin level predicts outcome following autologous hematopoietic stem cell transplantation in patients with multiple myeloma. Transplant Proc 2007;39:2893-7. DOI: https://doi.org/10.1016/j.transproceed.2007.08.052

How to Cite

Murzakhmetova, A. O., Kamkhen, V. B., Ainabay, A. M., Meiramova, A. M., Kemaykin, V. M., & Ainabekova, B. A. (2023). Association of β<sub>2</sub> microglobulin level and glomerular filtration rate in patients with acute leukemia after hematopoietic stem cell transplantation. Italian Journal of Medicine, 17(1). https://doi.org/10.4081/itjm.2023.1563