A case of posterior reversible encephalopathy syndrome in the setting of post-partum preeclampsia with suppressed plasma aldosterone levels and plasma renin activity

Aurelio Negro, Rosaria Santi, Chiara Grasselli, Simona Davoli, Franco Perazzoli

Second Division of Internal Medicine and Hypertension Unit, Arcispedale S. Maria Nuova, Reggio Emilia, Italy

ABSTRACT

Posterior reversible encephalopathy syndrome (PRES) is characterized by headache, altered mental status, visual loss, and seizures. PRES is associated with neuroradiological findings: white matter abnormalities, predominantly in the parieto-occipital regions of the brain. PRES has been described in association with hypertensive encephalopathy, eclampsia, renal failure, or following immunosuppressive or anticancer therapy. We report a case of PRES in a severe preeclampsia occurring in the late post-partum period, with suppressed plasma aldosterone levels and plasma renin activity. These laboratory abnormalities may be due to an apparent mineralocorticoid excess syndrome.

Introduction

Posterior reversible encephalopathy syndrome (PRES) encompasses both clinical and radiological features, predominantly affecting the white matter of the posterior cerebral hemispheres. Neuroimaging techniques may show diffuse signal abnormalities involving the subcortical white matter in the parieto-occipital lobes; the brain stem, basal ganglia, frontal lobes, and cerebellum may also be involved.1,2 On clinical grounds, PRES is characterized by headache, seizures, obtundation and lethargy, altered mental status, and visual loss. PRES has been described in association with hypertensive encephalopathy, eclampsia, renal failure with hypertension, or following immunosuppressive or anticancer therapy.1 Less frequently, it has been reported in the setting of autoimmune connective tissue diseases, thrombotic thrombocytopenic purpura, HIV syndrome, acute intermittent porphyria, organ transplantation,2 and hypercalcemia.3 An abrupt rise in blood pressure is thought to be the main pathophysiological mechanism leading to an acute disruption of the blood-brain barrier. Although being initially described as reversible,1 PRES is now believed to carry an elevated risk of permanent cerebral injury, especially if treatment is delayed.2,4 Preeclampsia (PE) is a pregnancy-related disorder, typically presenting with new-onset hypertension and proteinuria after 20 weeks of gestation, or in the early postpartum period. The term eclampsia is applied when seizures follow, complicating the preeclampsia condition. To our knowledge, a few isolated reports of PRES associated with postpartum PE have been published so far.

We report a case of PRES in the setting of severe postpartum PE associated with acquired apparent mineralocorticoid excess (AME) syndrome, possibly due to a reduced expression or activity of the placental 11β-hydroxysteroid dehydrogenase type 2 enzyme (11β-HSD2).

Case Report

A 32-year old woman of black African origin, at her first pregnancy, was admitted at the 38th week of gestation for scheduled caesarean delivery because of breech presentation. She had no family history of arterial hypertension. The pregnancy was uneventful. Her blood pressure at admission was 110/66 mmHg.
A healthy male infant was born. She was discharged four days after delivery, with blood pressure 110/70 mmHg. Of note, at admission, there was mild hypokalemia (3.1 mEq/L) and metabolic alkalosis (HCO₃⁻=29 mEq/L). Ten days after delivery, the patient was referred to our unit because of sudden onset of thunderclap headache, with a measured blood pressure of 210/110 mmHg. Blood chemistry showed altered liver function tests (aspartate transaminase 64, alanine aminotransferase 78 IU/L), increased low-density lipoprotein levels (743 IU), proteinuria (3+ at dipstick) without renal function abnormalities; serum hemoglobin, albumin, glucose and bilirubin were normal. Plasma Na⁺ and K⁺ concentrations were 148 and 2.9 mEq/L, respectively, and persistent metabolic alkalosis (HCO₃⁻=31 mEq/L) was noted; the uric acid level was 7.9 mg/dL. The plasma renin activity (PRA) was clearly suppressed (0.2 ng/Angiotensin I/mL/h) and the plasma aldosterone concentration (PAC) was almost undetectable (<4 pg/mL, normal range 30-140 pg/mL). Detailed neurological examination showed no abnormalities. Head computed tomography scan was unremarkable. We hypothesized a post partum pre-eclamptic hypertensive encephalopathy with possible appearance of PRES. A brain magnetic resonance imaging (MRI) was quickly performed and confirmed the hypothesis, showing swelling and altered signal of the brain cortex in both parietal lobes, and in the watershed zones between anterior and posterior cerebral arteries territories. A hyperintense signal was also seen, arising from the right frontal sulci, an expression of blood extravasation in the subarachnoid space, probably as a consequence of the hypertensive crisis (Figure 1). In the regions of altered signal, diffusion-weighted imaging acquisition showed no diffusion modification. The presence of blood in the subarachnoid space prompted the acquisition of a magnetic resonance angiography study of the intracranial arterial branches (Figure 2) which excluded artero-venous malformations. A diagnosis of hypertensive encephalopathy with PRES, in the setting of post-partum PE, was made. Electroencephalography showed slow waves and diffuse irritative pattern, compatible with the above diagnosis. Renal duplex ultrasonography showed no signs of renal artery stenosis. Urinalysis showed normal excretion of fractionated metanephrine; the urinary potassium concentration was 67 mEq/L, and was judged inappropriately high, in the presence of hypokalemia. The patient received intravenous labetalol for the first 24 h and then therapy was changed to oral amlodipine (15 mg o.d.), as blood pressure decreased to 145/83 mmHg and her headache disappeared. After four days, blood pressure was 130/80 mmHg with amlo- dipine 10 mg o.d.; serum K⁺ was 3.2 mEq/L with oral potassium supplementation. On Day 14, the patient was discharged in good clinical condition, with a normalized blood pressure, and receiving oral amlodipine 5 mg o.d.

On MRI follow up, performed during treatment and clinical recovery, the parietal cortical lesions and the subarachnoid hemorrhage in the frontal sulci gra-
dually reduced and finally disappeared completely (Figure 3).

After 1.5 months, the patient was in good clinical condition, with normal blood pressure in the absence of antihypertensive therapy; she dropped oral potassium supplements after approximately three weeks. The laboratory tests showed normal serum electrolytes and no proteinuria on the dipstick. The PRA and PAC rose to 1.1 ngAngioI/mL/h and 37 pg/mL, respectively.

Discussion

We report a case of severe PE occurring in the late post-partum period, associated with clinical and neuroradiological findings consistent with PRES. PE is a multi-organ disease, characterized by hypertension and proteinuria, possibly complicated by eclamptic seizures. PE affects approximately 5% of all pregnancies worldwide, bearing significant morbidity and mortality for the mother and the fetus. The disease typically occurs late in pregnancy, during the third trimester or in the early post-partum period. Although the etiology of PE is unclear, there is compelling evidence pointing to a widespread vascular endothelial cell dysregulation and dysfunction as a result of placental hypoperfusion, resulting in placental secretion of antiangiogenic growth factors. However, a significantly reduced concentration and activity of the enzyme 11β-HSD2 has been described in human placentas of patients with PE. This enzyme normally converts serum cortisol to its inactive metabolite cortisone. The 11β-HSD2 is predominantly expressed, along with the mineralocorticoid receptor, in the renal distal tubules and collecting ducts, in the colon, in the salivary glands and also in the placenta, where it protects the fetus from an excessive amount of maternal cortisol. In fact, the enzyme regulates access of glucocorticoid hormones to glucocorticoid and mineralocorticoid receptors. Since cortisol, but not cortisone, is a potent agonist of mineralocorticoid receptors and circulates at levels 100 to 1000 times higher than those of aldosterone, a reduced activity of the 11β-HSD2 may expose the kidney to an excess of cortisol, which can act as a potent mineralocorticoid hormone with ensuing salt retention, hypertension, hypokalemia and metabolic alkalosis. The AME syndrome is the result of defective 11β-HSD2 enzyme. It is characterized clinically by a mineralocorticoid excess status, with hypertension, hypokalemia and metabolic alkalosis, plasma volume expansion and a marked suppression of the renin-angiotensin-aldosterone system. First described by Ulick and colleagues, the AME syndrome can be congenital or acquired, but the two forms share the same pathophysiology. Congenital AME syndrome has an autosomal recessive model of inheritance. AME patients are homozygous for 11β-HSD2 inactivating mutations causing full or partial loss of enzymatic activity; the onset of symptoms may occur in childhood, adolescence or early adulthood, with phenotypes varying from life-threatening conditions to milder forms. In most cases, the acquired AME syndrome is due, for instance, to excessive liquorice intake. Biochemical abnormalities comprise suppressed PRA, undetectable serum aldosterone levels, hypokalemia, metabolic alkalosis, altered ratio of urinary free cortisol (UFF) to free cortisone (UFE). The urinary UFF/UFE ratio is not widely used, and, in our case, it was unfortunately not available.

In our patient, we suspected an acquired AME syndrome due to a reduced 11β-HSD2 activity of placental origin on the basis of hypokalemia with alkalosis and renal potassium wasting, marked suppression of PRA and serum aldosterone levels and subsequent progressive recovery of the renin-aldosterone system. The definite diagnosis of AME syndrome was not fully established due to the absence of urinary UFF/UFE ratio. However, we acknowledge that it is hard to believe that a putative impairment in placental 11β-HSD2 activity per se may have been involved in the pathogenesis of a systemic syndrome encompassing accelerated hypertension and deranged autoregulation of the cerebral circulation. PRA and plasma aldosterone are reduced in PE compared to normal pregnancy, together with an increase in the sensitivity of the vessels to vasoconstrictor agents such as angiotensin II (AII). However, plasma aldosterone levels are usually less suppressed than those of PRA, so that the so-called al-
After the sudden rise in blood pressure may exceed the upper limit of cerebral autoregulation, with abrupt dilatation of cerebral arterioles resulting in interstitial extravasation of serum protein and fluid, i.e. vasogenic edema. In the rarer normotensive cases occurring after immunosuppressive or cytotoxic treatment, a toxic effect on vascular endothelium is hypothesized. MRI plays an important role in providing early information about cerebral involvement by diffuse signal abnormalities mainly involving the subcortical white matter in the parieto-occipital regions of the brain; the temporal and frontal lobes, cerebellum, basal ganglia, and brainstem may also be involved. Although most cases of PRES are reversible, delay in diagnosis and treatment may lead to irreversible lesions. Therefore, early recognition and correction of the condition underlying PRES is the recommended treatment for this disorder. The appropriate and rapid lowering of blood pressure in patients with PRES is essential to avoid permanent brain injury.

Conclusions

This case illustrates a late postpartum severe PE complicated by PRES associated with suppressed plasma aldosterone levels and PRA. The presence of even mild and isolated derangements in serum potassium and acid-base balance, in the setting of PE, should prompt clinicians to broaden the spectrum of differential diagnoses, including acquired AME syndrome.

References

in the peripheral metabolism of cortisol. J Clin Endocri-
nol Metab 1979;49:757-64.
sodium retention. Merely an acquired condition of ap-
parent mineralocorticoid excess? A case report. Ann Ital
11. Brown MA, Wang J, Whitworth JA. The renin-angio-
tensin-aldosterone system in pre-eclampsia. Clin Exp
12. Rodriguez M, Moreno J, Hasbun J. RAS in pregnancy
and preeclampsia and eclampsia. Int J Hypertens 2012;
2012:739274.
13. Verma A, Shaji PD. A patient with postpartum hyperten-
against AT1-receptor and α1-adrenergic receptor in
patients with hypertension. Hypertension Res 2002;