Molecular and hematological spectrum of α-thalassemia in Saudi patients

Published: 25 November 2024
Abstract Views: 71
PDF: 37
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

α-thalassemia (α-thal) is a genetic disorder characterized by a decreased synthesis of α-globin chains. A deletion mutation most often causes it in one or more α-globin chains. No comprehensive characterization studies have been conducted on α-thal patients in the Saudi population. Therefore, this research aims to identify the spectrum of genetic mutations responsible for α-thal in our region. Individuals with microcytic, hypochromic red blood cells and normal hemoglobin (Hb) A2 were enrolled. Sixty samples of individuals suspected of α-thal were selected for further genetic analysis. Multiplex ligation-dependent probe amplification assay was used to detect deletion mutations in α-globin genes. Among all samples tested, the -α3.7 deletion mutation was detected in 57 (95%) cases, whereas no mutation was detected in the remaining 3 (5%). In addition, 9 (15%) individuals were heterozygous for -α3.7, while -α3.7 homozygosity was found in 85% of the analyzed cases. The hematological characteristics of α3.7 subjects were significantly lower than the control group in the mean of Hb, hematocrit, mean corpuscular volume, mean corpuscular Hb, and mean corpuscular Hb concentration (p<0.001). These results highlight the importance of α-thal diagnosis and investigation in Saudi Arabia’s pre-marital screening program for microcytic hypochromic individuals. Thus, it contributes to reducing the spread of genetic diseases.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

PlumX Metrics

PlumX Metrics  provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

Citations

Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int 2011;108:532-40. DOI: https://doi.org/10.3238/arztebl.2011.0532
Weatherall DJ. The challenge of haemoglobinopathies in resource‐poor countries. Br J Haematol 2011;154:736-44. DOI: https://doi.org/10.1111/j.1365-2141.2011.08742.x
Musallam KM, Cappellini MD, Coates TD, et al. Αlpha-thalassemia: a practical overview. Blood Rev 2024;64:101165. DOI: https://doi.org/10.1016/j.blre.2023.101165
Hockham C, Ekwattanakit S, Bhatt S, et al., Estimating the burden of α-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. Elife 2019;8:e40580. DOI: https://doi.org/10.7554/eLife.40580
Alhuthali HM, Ataya EF, Alsalmi A, et al. Molecular patterns of alpha-thalassemia in the kingdom of Saudi Arabia: identification of prevalent genotypes and regions with high incidence. Thromb J 2023;21:115. DOI: https://doi.org/10.1186/s12959-023-00560-w
Moustafa AZ, Almalki RA, Qhashgry E, et al., The prevalence of hemoglobin abnormality in the premarital screening Saudi population in Ma kah city in a cross-sectional study Abstract: hemoglobinopathies in Makkah city. SMHJ 2022;2:17-25. DOI: https://doi.org/10.54293/smhj.v2i1.25
Mettananda S, Higgs DR. Molecular basis and genetic modifiers of thalassemia. Hematol Oncol Clin North Am 2018;32:177-91. DOI: https://doi.org/10.1016/j.hoc.2017.11.003
Bunn HF, Forget BG. Hemoglobin: molecular, genetic and clinical aspects. Philadelphia, PA, USA: W.B. Saunders Company; 1986.
Harteveld CL, Higgs DR. α-thalassaemia. Orphanet J Rare Dis 2010;5:13. DOI: https://doi.org/10.1186/1750-1172-5-13
Qiu QW, Wu DD, Yu LH, et al., Evidence of recent natural selection on the Southeast Asian deletion (--SEA) causing α-thalassemia in South China. BMC Evol Biol 2013;13:63. DOI: https://doi.org/10.1186/1471-2148-13-63
Vichinsky EP. Clinical manifestations of α-thalassemia. Cold Spring Harb Perspect Med 2013;3:a011742. DOI: https://doi.org/10.1101/cshperspect.a011742
Piel FB, Weatherall DJ. The α-thalassemias. N Engl J Med 2014;371:1908-16. DOI: https://doi.org/10.1056/NEJMra1404415
Lal A, Goldrich ML, Haines DA, et al., Heterogeneity of hemoglobin H disease in childhood. N Engl J Med 2011;364:710-8. DOI: https://doi.org/10.1056/NEJMoa1010174
Akhtar MS, Qaw F, Borgio JF, et al., Spectrum of α-thalassemia mutations in transfusion-dependent β-thalassemia patients from the Eastern Province of Saudi Arabia. Hemoglobin 2013;37:65-73. DOI: https://doi.org/10.3109/03630269.2012.753510
Dehbozorgian J, Moghadam M, Daryanoush S, et al., Distribution of alpha-thalassemia mutations in Iranian population. Hematology 2015;20:359-62. DOI: https://doi.org/10.1179/1607845414Y.0000000227
Soteriades ES, Weatherall D. The Thalassemia International Federation: a global public health paradigm. Thalass Rep 2014;4:1840. DOI: https://doi.org/10.4081/thal.2014.1840
Weatherall, D. The global problem of genetic disease. Ann Hum Biol 2005;32:117-22. DOI: https://doi.org/10.1080/03014460500075480
AlHamdan NA, Almazrou YY, Alswaidi FM, Choudhry AJ. Premarital screening for thalassemia and sickle cell disease in Saudi Arabia. Genet Med 2007;9:372-7. DOI: https://doi.org/10.1097/GIM.0b013e318065a9e8
Hamali HA, Saboor M. Undiagnosed hemoglobinopathies: a potential threat to the premarital screening program. Pak J Med Sci 2019;35:1611-5. DOI: https://doi.org/10.12669/pjms.35.6.976
Motiani A, Zubair M, Sonagra A. Laboratory evaluation of alpha thalassemia. Treasure Island, FL, USA: StatPearls; 2024.
Greene DN, Vaughn CP, Crews BO, et al., Advances in detection of hemoglobinopathies. Clin Chim Acta 2015;439:50-7. DOI: https://doi.org/10.1016/j.cca.2014.10.006
Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57. DOI: https://doi.org/10.1093/nar/gnf056
Colosimo A, Gatta V, Guida V, et al. Application of MLPA assay to characterize unsolved α-globin gene rearrangements. Blood Cells Mol Dis 2011;46:139-44. DOI: https://doi.org/10.1016/j.bcmd.2010.11.006
Gallienne AE, Dréau HM, McCarthy J, et al. Multiplex ligation-dependent probe amplification identification of 17 different β-globin gene deletions (including four novel mutations) in the UK population. Hemoglobin 2009;33:406-16. DOI: https://doi.org/10.3109/03630260903344564
White SJ, Vink GR, Kriek M, et al. Two‐color multiplex ligation‐dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum Mutat 2004;24:86-92. DOI: https://doi.org/10.1002/humu.20054
Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program 2009:26-34. DOI: https://doi.org/10.1182/asheducation-2009.1.26
Suemasu C, Kimura EM, Oliveira DM, et al. Characterization of alpha thalassemic genotypes by multiplex ligation-dependent probe amplification in the Brazilian population. Braz J Med Biol Res 2011;44:16-22. DOI: https://doi.org/10.1590/S0100-879X2010007500144
Yuregir OO, Ayaz A, Yalcintepe S, et al. Detection of α-thalassemia by using multiplex ligation-dependent probe amplification as an additional method for rare mutations in southern Turkey. Indian J Hematol Blood Transfus 2016;32:454-9. DOI: https://doi.org/10.1007/s12288-015-0617-z
Borgio JF, Abdulazeez S, Almandil NB, et al. The‑α3. 7 deletion in α‑globin genes increases the concentration of fetal hemoglobin and hemoglobin A2 in a Saudi Arabian population. Mol Med Rep 2018;17:1879-84. DOI: https://doi.org/10.3892/mmr.2017.8033
Ganeshaguru K, Acquaye JK, Samuel AP, et al. Prevalence of thalassaemias in ethnic Saudi Arabians. Trop Geogr Med 1987;39:238-43.
Hellani A, Fadel E, El-Sadadi S, et al. Molecular spectrum of α-thalassemia mutations in microcytic hypochromic anemia patients from Saudi Arabia. Genet Test Mol Biomarkers 2009;13:219-21. DOI: https://doi.org/10.1089/gtmb.2008.0123
Hassan SM, Hamza N, Al-Lawatiya FJ, et al. Extended molecular spectrum of β-and α-thalassemia in Oman. Hemoglobin 2010;34:127-34. DOI: https://doi.org/10.3109/03630261003673147
El-Kalla S, Baysal E. α-thalassemia in the United Arab Emirates. Acta Haematol 1998;100:49-53. DOI: https://doi.org/10.1159/000040863
Jassim N, Al-Arrayed S, Phil GNM, et al. Molecular basis of α-thalassemia in Bahrain. Bahrain Med Bull 2001;23:3-7.
Adekile A, Gu LH, Baysal E, et al. Molecular characterization of α-thalassemia determinants, β-thalassemia alleles, and βS haplotypes among Kuwaiti Arabs. Acta Haematol 1994;92:176-81. DOI: https://doi.org/10.1159/000204216
Saboor M, Mobarki AA, Hamali HA, et al. Frequency and genotyping of alpha thalassemia in individuals undergoing premarital screening. J Pak Med Assoc 2021;71:101-4. DOI: https://doi.org/10.5455/JPMA.58521
Ghoush MWA. Subtypes of alpha thalassemia diagnosed at a Medical Center in Jordan. TSK Koruyucu Hekimlik Bülteni 2008;7:373-6.
Borgio JF. Molecular nature of alpha-globin genes in the Saudi population. Saudi Med J 2015;36:1271-6. DOI: https://doi.org/10.15537/smj.2015.11.12704
Al-Nafie AN, Borgio JF, AbdulAzeez S, et al. Co-inheritance of novel ATRX gene mutation and globin (α & β) gene mutations in transfusion dependent beta-thalassemia patients. Blood Cells Mol Dis 2015;55:27-9. DOI: https://doi.org/10.1016/j.bcmd.2015.03.008
Adekile A, Sukumaran J, Thomas D, et al. Alpha thalassemia genotypes in Kuwait. BMC Med Genet 2020;21:170. DOI: https://doi.org/10.1186/s12881-020-01105-y
Akhavan-Niaki H, Kamangari RY, Banihashemi A, et al. Hematologic features of alpha thalassemia carriers. Int J Mol Cell Med 2012;1:162-7.
Velasco-Rodríguez D, Blas C, Alonso-Domínguez JM, et al. Cut-off values of hematologic parameters to predict the number of alpha genes deleted in subjects with deletional alpha thalassemia. Int J Mol Sci 2017;18:2707. DOI: https://doi.org/10.3390/ijms18122707
Wang Y, Liu Q, Tang F, et al. Epigenetic regulation and risk factors during the development of human gametes and early embryos. Annu Rev Genomics Hum Genet 2019;20:21-40. DOI: https://doi.org/10.1146/annurev-genom-083118-015143

How to Cite

Alserihi, R., Alswat, S., Alkhatabi , H., Qutob, H. M., Yasin, E. B., & Qadah , T. (2024). Molecular and hematological spectrum of α-thalassemia in Saudi patients. Italian Journal of Medicine, 18(4). https://doi.org/10.4081/itjm.2024.1837