Screening of the key genes and signaling pathways for schizophrenia using bioinformatics and next generation sequencing data analysis

Published: 18 December 2024
Abstract Views: 832
PDF: 214
SUPPLEMENTARY MATERIAL: 154
HTML: 13
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Schizophrenia is thought to be the most prevalent chronic psychiatric disorder. Researchers have identified numerous proteins associated with the occurrence and development of schizophrenia. This study aimed to identify potential core genes and pathways involved in schizophrenia through exhaustive bioinformatics and next generation sequencing (NGS) data analyses using GSE106589 NGS data of neural progenitor cells and neurons obtained from healthy controls and patients with schizophrenia. The NGS data were downloaded from the Gene Expression Omnibus database. NGS data was processed by the DESeq2 package in R software, and the differentially expressed genes (DEGs) were identified. Gene ontology (GO) enrichment analysis and REACTOME pathway enrichment analysis were carried out to identify potential biological functions and pathways of the DEGs. Protein-protein interaction network, module, micro-RNA (miRNA)-hub gene regulatory network, transcription factor (TF)-hub gene regulatory network, and drug-hub gene interaction network analysis were performed to identify the hub genes, miRNA, TFs, and drug molecules. Potential hub genes were analyzed using receiver operating characteristic curves in the R package. In this investigation, an overall 955 DEGs were identified: 478 genes were remarkably upregulated and 477 genes were distinctly downregulated. These genes were enriched for GO terms and pathways mainly involved in the multicellular organismal process, G protein-coupled receptor ligand binding, regulation of cellular processes, and amine ligand-binding receptors. MYC, FN1, CDKN2A, EEF1G, CAV1, ONECUT1, SYK, MAPK13, TFAP2A, and BTK were considered the potential hub genes. The MiRNA-hub gene regulatory network, TF-hub gene regulatory network, and drug-hub gene interaction network were constructed successfully and predicted key miRNAs, TFs, and drug molecules for schizophrenia diagnosis and treatment. On the whole, the findings of this investigation enhance our understanding of the potential molecular mechanisms of schizophrenia and provide potential targets for further investigation.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

PlumX Metrics

PlumX Metrics  provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

Citations

Hung CC, Lin CH, Lane HY. Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int J Mol Sci. 2021;22(18):9718. doi:10.3390/ijms22189718 DOI: https://doi.org/10.3390/ijms22189718
Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci. 2000;250(6):274-285. doi:10.1007/s004060070002 DOI: https://doi.org/10.1007/s004060070002
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. Can J Psychiatry. 2019;64(1):5-17. doi:10.1177/0706743718773728 DOI: https://doi.org/10.1177/0706743718773728
Kritharides L, Chow V, Lambert TJ. Cardiovascular disease in patients with schizophrenia. Med J Aust. 2017;206(2):91-95. doi:10.5694/mja16.00650 DOI: https://doi.org/10.5694/mja16.00650
Rao J, Chiappelli J, Kochunov P, Regenold WT, Rapoport SI, Hong LE. Is schizophrenia a neurodegenerative disease? Evidence from age-related decline of brain-derived neurotrophic factor in the brains of schizophrenia patients and matched nonpsychiatric controls. Neurodegener Dis. 2015;15(1):38-44. doi:10.1159/000369214 DOI: https://doi.org/10.1159/000369214
Torrey EF, Yolken RH. Schizophrenia and Infections: The Eyes Have It. Schizophr Bull. 2017;43(2):247-252. doi:10.1093/schbul/sbw113 DOI: https://doi.org/10.1093/schbul/sbw113
Subramaniam M, Lam M, Guo ME, He VY, Lee J, Verma S, Chong SA. Body mass index, obesity, and psychopathology in patients with schizophrenia. J Clin Psychopharmacol. 2014;34(1):40-46. doi:10.1097/JCP.0000000000000058 DOI: https://doi.org/10.1097/JCP.0000000000000058
Chan JKN, Wong CSM, Or PCF, Chen EYH, Chang WC. Risk of mortality and complications in patients with schizophrenia and diabetes mellitus: population-based cohort study. Br J Psychiatry. 2021;219(1):375-382. doi:10.1192/bjp.2020.248 DOI: https://doi.org/10.1192/bjp.2020.248
Ayerbe L, Forgnone I, Addo J, Siguero A, Gelati S, Ayis S. Hypertension risk and clinical care in patients with bipolar disorder or schizophrenia; a systematic review and meta-analysis. J Affect Disord. 2018;225:665-670. doi:10.1016/j.jad.2017.09.002 DOI: https://doi.org/10.1016/j.jad.2017.09.002
Reynolds GP. The Etiology of Metabolic Disturbances in Schizophrenia: Drugs, Genes, and Environment. Int J Neuropsychopharmacol. 2021;24(10):854-855. doi:10.1093/ijnp/pyab047 DOI: https://doi.org/10.1093/ijnp/pyab047
Pillai A, Buckley PF. Reliable biomarkers and predictors of schizophrenia and its treatment. Psychiatr Clin North Am. 2012;35(3):645-659. doi:10.1016/j.psc.2012.06.006 DOI: https://doi.org/10.1016/j.psc.2012.06.006
Yang CP, Li X, Wu Y, Shen Q, Zeng Y, Xiong Q, Wei M, Chen C, Liu J, Huo Y, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun. 2018;9(1):838. doi:10.1038/s41467-018-03247-3 DOI: https://doi.org/10.1038/s41467-018-03247-3
Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci U S A. 2003;100(15):8993-8998. doi:10.1073/pnas.1432927100 DOI: https://doi.org/10.1073/pnas.1432927100
Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, Guo N, Huang HP, Xiong W, Zheng H, et al. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol. 2008;181(5):791-801. doi:10.1083/jcb.200711021 DOI: https://doi.org/10.1083/jcb.200711021
Kwon E, Wang W, Tsai LH. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry. 2013;18(1):11-12. doi:10.1038/mp.2011.170 DOI: https://doi.org/10.1038/mp.2011.170
Walters JT, Corvin A, Owen MJ, Williams H, Dragovic M, Quinn EM, Judge R, Smith DJ, Norton N, Giegling I, et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry. 2010;67(7):692-700. doi:10.1001/archgenpsychiatry.2010.81 DOI: https://doi.org/10.1001/archgenpsychiatry.2010.81
Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res. 2012;1470:145-158. doi:10.1016/j.brainres.2012.06.032 DOI: https://doi.org/10.1016/j.brainres.2012.06.032
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 2018;8(1):55. doi:10.1038/s41398-018-0102-1 DOI: https://doi.org/10.1038/s41398-018-0102-1
Funk AJ, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology. 2012;37(4):896-905. doi:10.1038/npp.2011.267 DOI: https://doi.org/10.1038/npp.2011.267
Roussos P, Katsel P, Davis KL, Giakoumaki SG, Lencz T, Malhotra AK, Siever LJ, Bitsios P, Haroutunian V. Convergent findings for abnormalities of the NF-κB signaling pathway in schizophrenia. Neuropsychopharmacology. 2013;38(3):533-539. doi:10.1038/npp.2012.215 DOI: https://doi.org/10.1038/npp.2012.215
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. Mol Cell Ther. 2016;4:2. doi:10.1186/s40591-016-0047-9 DOI: https://doi.org/10.1186/s40591-016-0047-9
Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol. 2016;1418:93-110. doi:10.1007/978-1-4939-3578-9_5 DOI: https://doi.org/10.1007/978-1-4939-3578-9_5
Hoffman GE, Hartley BJ, Flaherty E, Ladran I, Gochman P, Ruderfer DM, Stahl EA, Rapoport J, Sklar P, Brennand KJ. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nat Commun. 2017;8(1):2225. doi:10.1038/s41467-017-02330-5 DOI: https://doi.org/10.1038/s41467-017-02330-5
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8 DOI: https://doi.org/10.1186/s13059-014-0550-8
Thomas PD. The Gene Ontology and the Meaning of Biological Function. Methods Mol Biol. 2017;1446:15‐24. doi:10.1007/978-1-4939-3743-1_2 DOI: https://doi.org/10.1007/978-1-4939-3743-1_2
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B et al The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D655. doi:10.1093/nar/gkx1132 DOI: https://doi.org/10.1093/nar/gkx1132
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35(Web Server issue):W193-W200. doi:10.1093/nar/gkm226 DOI: https://doi.org/10.1093/nar/gkm226
Porras P, Barrera E, Bridge A, Del-Toro N, Cesareni G, Duesbury M, Hermjakob H, Iannuccelli M, Jurisica I, Kotlyar M, et al. Towards a unified open access dataset of molecular interactions. Nat Commun. 2020;11(1):6144. doi:10.1038/s41467-020-19942-z DOI: https://doi.org/10.1038/s41467-020-19942-z
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-2504. doi:10.1101/gr.1239303 DOI: https://doi.org/10.1101/gr.1239303
Luo X, Guo L, Dai XJ, Wang Q, Zhu W, Miao X, Gong H. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis. Neuropsychiatr Dis Treat. 2017;13:2011-2020. doi:10.2147/NDT.S142742 DOI: https://doi.org/10.2147/NDT.S142742
Li Y, Li W, Tan Y, Liu F, Cao Y, Lee KY. Hierarchical Decomposition for Betweenness Centrality Measure of Complex Networks. Sci Rep. 2017;7:46491.. doi:10.1038/srep46491 DOI: https://doi.org/10.1038/srep46491
Gilbert M, Li Z, Wu XN, Rohr L, Gombos S, Harter K, Schulze WX. Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments. J Proteomics. 2021;235:104114. doi:10.1016/j.jprot.2021.104114 DOI: https://doi.org/10.1016/j.jprot.2021.104114
Li G, Li M, Wang J, Li Y, Pan Y. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins. IEEE/ACM Trans Comput Biol Bioinform. 2020;17(4):1451-1458. doi:10.1109/TCBB.2018.2889978 DOI: https://doi.org/10.1109/TCBB.2018.2889978
Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 2013;14:163. doi:10.1186/1471-2105-14 DOI: https://doi.org/10.1186/1471-2105-14-163
Fan Y, Xia J (2018) miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol 1819:215-233. doi:10.1007/978-1-4939-8618-7_10 DOI: https://doi.org/10.1007/978-1-4939-8618-7_10
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234-W241. doi:10.1093/nar/gkz240 DOI: https://doi.org/10.1093/nar/gkz240
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-2105-12-77 DOI: https://doi.org/10.1186/1471-2105-12-77
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. Medicina (Kaunas). 2023;59(2):309. doi:10.3390/medicina59020309 DOI: https://doi.org/10.3390/medicina59020309
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes. 2023;16:11795514231155635. doi:10.1177/11795514231155635 DOI: https://doi.org/10.1177/11795514231155635
Sayad A, Badrlou E, Ghafouri-Fard S, Taheri M. Association Analysis Between the rs1899663 Polymorphism of HOTAIR and Risk of Psychiatric Conditions in an Iranian Population. J Mol Neurosci. 2020;70(6):953-958. doi:10.1007/s12031-020-01499-7 DOI: https://doi.org/10.1007/s12031-020-01499-7
Czepielewski LS, Massuda R, Panizzutti B, Grun LK, Barbé-Tuana FM, Teixeira AL, Barch DM, Gama CS. Telomere Length and CCL11 Levels are Associated With Gray Matter Volume and Episodic Memory Performance in Schizophrenia: Evidence of Pathological Accelerated Aging. Schizophr Bull. 2018;44(1):158-167. doi:10.1093/schbul/sbx015 DOI: https://doi.org/10.1093/schbul/sbx015
Furuta S, Aleksic B, Nawa Y, Kimura H, Kushima I, Ishizuka K, Kato H, Toyama M, Arioka Y, Mori D, et al. Investigation of OLIG2 as a candidate gene for schizophrenia and autism spectrum disorder. Nagoya J Med Sci. 2022;84(2):260-268. doi:10.18999/nagjms.84.2.260
Qing L, Xiong P, Lu Y, Jiang H, Nie S. Sex-dependent association of DNA methylation in the coding region of the corticotropin-releasing hormone gene and schizophrenia spectrum disorder. Ann Hum Biol. 2023;50(1):1-8. doi:10.1080/03014460.2023.2212176 DOI: https://doi.org/10.1080/03014460.2023.2212176
Sargazi S, Zahedi Abghari A, Mirinejad S, Heidari Nia M, Majidpour M, Danesh H, Saravani R, Sheervalilou R, Shakiba M, Zahedi Abghari F. Long noncoding RNA HOTAIR polymorphisms and susceptibility to bipolar disorder: a preliminary case-control study. Nucleosides Nucleotides Nucleic Acids. 2022;41(7):684-701. doi:10.1080/15257770.2022.2065017 DOI: https://doi.org/10.1080/15257770.2022.2065017
Sun Q, Zhang Y, Wang S, Yang F, Cai H, Xing Y, Zhou L, Chen S, Wang Y. LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis of SH-SY5Y cells by regulating miR-221-3p in Parkinson’s disease. Exp Cell Res. 2022;417(1):113132. doi:10.1016/j.yexcr.2022.113132 DOI: https://doi.org/10.1016/j.yexcr.2022.113132
Kim IJ, Lee JY, Park HW, Park HS, Ko EJ, Sung JH, Kim NK. Association between HOTAIR lncRNA Polymorphisms and Coronary Artery Disease Susceptibility. J Pers Med. 2021;11(5):375. doi:10.3390/jpm11050375 DOI: https://doi.org/10.3390/jpm11050375
Zee RY, Cook NR, Cheng S, Erlich HA, Lindpaintner K, Lee RT, Ridker PM. Threonine for alanine substitution in the eotaxin (CCL11) gene and the risk of incident myocardial infarction. Atherosclerosis. 2004;175(1):91-94. doi:10.1016/j.atherosclerosis.2004.01.042 DOI: https://doi.org/10.1016/j.atherosclerosis.2004.01.042
Lang YY, Xu XY, Liu YL, Ye CF, Hu N, Yao Q, Cheng WS, Cheng ZG, Liu Y. Ghrelin Relieves Obesity-Induced Myocardial Injury by Regulating the Epigenetic Suppression of miR-196b Mediated by lncRNA HOTAIR. Obes Facts. 2022;15(4):540-549. doi:10.1159/000523870 DOI: https://doi.org/10.1159/000523870
Wang CY, Liu S, Xie XN, Luo ZY, Yang L, Tan ZR. Association between polymorphisms in SLC15A1 and PLA2G16 genes and development of obesity in Chinese subjects. Diabetes Metab Syndr Obes. 2018;11:439-446. doi:10.2147/DMSO.S161808 DOI: https://doi.org/10.2147/DMSO.S161808
Mastorakos G, Zapanti E. The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin releasing hormone. Nutr Neurosci. 2004;7(5-6):271-280. doi:10.1080/10284150400020516 DOI: https://doi.org/10.1080/10284150400020516
Sargazi S, Ravanbakhsh M, Nia MH, Mirinejad S, Sheervalilou R, Majidpour M, Danesh H, Saravani R. Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study. Dis Markers. 2022;2022:4327342. doi:10.1155/2022/4327342 DOI: https://doi.org/10.1155/2022/4327342
Jamali Z, Nazari M, Khoramdelazad H, Hakimizadeh E, Mahmoodi M, Karimabad MN, Hassanshahi G, Rezaeian M, Balaei P, Darakhshan S, et al. Expression of CC chemokines CCL2, CCL5, and CCL11 is associated with duration of disease and complications in type-1 diabetes: a study on Iranian diabetic patients. Clin Lab. 2013;59(9-10):993-1001. doi:10.7754/clin.lab.2012.120810 DOI: https://doi.org/10.7754/Clin.Lab.2012.120810
Roy MS, Roy A, Gallucci WT, Collier B, Young K, Kamilaris TC, Chrousos GP. The ovine corticotropin-releasing hormone-stimulation test in type I diabetic patients and controls: suggestion of mild chronic hypercortisolism. Metabolism. 1993;42(6):696-700. doi:10.1016/0026-0495(93)90235-g DOI: https://doi.org/10.1016/0026-0495(93)90235-G
Ruan Z, Li Y, He R, Li X. Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer’s disease in rats via the Rho/ROCK signalling pathway. J Drug Target. 2021;29(5):531-540. doi:10.1080/1061186X.2020.1864739 DOI: https://doi.org/10.1080/1061186X.2020.1864739
Cherry JD, Stein TD, Tripodis Y, Alvarez VE, Huber BR, Au R, Kiernan PT, Daneshvar DH, Mez J, Solomon TM, et al. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer’s disease. PLoS One. 2017;12(9):e0185541. doi:10.1371/journal.pone.0185541 DOI: https://doi.org/10.1371/journal.pone.0185541
Sims R, Hollingworth P, Moskvina V, Dowzell K, O’Donovan MC, Powell J, Lovestone S, Brayne C, Rubinsztein D, Owen MJ, et al. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer’s disease. Neurosci Lett. 2009;461(1):54-59. doi:10.1016/j.neulet.2009.05.051 DOI: https://doi.org/10.1016/j.neulet.2009.05.051
De Souza EB, Whitehouse PJ, Price DL, Vale WW. Abnormalities in corticotropin-releasing hormone (CRH) in Alzheimer’s disease and other human disorders. Ann N Y Acad Sci. 1987;512:237-247. doi:10.1111/j.1749-6632.1987.tb24964.x DOI: https://doi.org/10.1111/j.1749-6632.1987.tb24964.x
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res. 2021;16(11):2184-2197. doi:10.4103/1673-5374.310608 DOI: https://doi.org/10.4103/1673-5374.310608
Goncharuk VD, Buijs RM, Swaab DF. Corticotropin-releasing hormone neurons in hypertensive patients are activated in the hypothalamus but not in the brainstem. J Comp Neurol. 2007;503(1):148-168. doi:10.1002/cne.21387 DOI: https://doi.org/10.1002/cne.21387
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron. 2017;94(3):431-446. doi:10.1016/j.neuron.2017.03.016 DOI: https://doi.org/10.1016/j.neuron.2017.03.016
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci. 2021;53(12):3960-3987. doi:10.1111/ejn.15009 DOI: https://doi.org/10.1111/ejn.15009
Reale M, Costantini E, Greig NH. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front Psychiatry. 2021;12:536257. doi:10.3389/fpsyt.2021.536257 DOI: https://doi.org/10.3389/fpsyt.2021.536257
Klockmeier K, Silva Ramos E, Raskó T, Martí Pastor A, Wanker EE. Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells. J Mol Biol. 2021;433(19):167184. doi:10.1016/j.jmb.2021.167184 DOI: https://doi.org/10.1016/j.jmb.2021.167184
Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF. Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm (Vienna). 2009;116(8):923-939. doi:10.1007/s00702-008-0174-9 DOI: https://doi.org/10.1007/s00702-008-0174-9
Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, Niciu MJ, Morgan PT, Surti TS, Bloch MH, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A. 2012;109(41):16720-16725. doi:10.1073/pnas.1208494109 DOI: https://doi.org/10.1073/pnas.1208494109
Yao JK, van Kammen DP, Gurklis J, Peters JL. Platelet aggregation and dense granule secretion in schizophrenia. Psychiatry Res. 1994;54(1):13-24. doi:10.1016/0165-1781(94)90061-2 DOI: https://doi.org/10.1016/0165-1781(94)90061-2
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K. FBXW7 promotes pathological cardiac hypertrophy by targeting EZH2-SIX1 signaling. Exp Cell Res. 2020;393(1):112059. doi:10.1016/j.yexcr.2020.112059 DOI: https://doi.org/10.1016/j.yexcr.2020.112059
Benitez R, Delgado-Maroto V, Caro M, Forte-Lago I, Duran-Prado M, O’Valle F, Lichtman AH, Gonzalez-Rey E, Delgado M. Vasoactive Intestinal Peptide Ameliorates Acute Myocarditis and Atherosclerosis by Regulating Inflammatory and Autoimmune Responses. J Immunol. 2018;200(11):3697-3710. doi:10.4049/jimmunol.1800122 DOI: https://doi.org/10.4049/jimmunol.1800122
Sun Z, Pang S, Cui Y, Yan B. Genetic and Functional Variants Analysis of the GATA6 Gene Promoter in Acute Myocardial Infarction. Front Genet. 2019;10:1100. doi:10.3389/fgene.2019.01100 DOI: https://doi.org/10.3389/fgene.2019.01100
Zheng PF, Liu F, Zheng ZF, Pan HW, Liu ZY. Identification MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 as the potential immune-related key genes involved in ischaemic cardiomyopathy by random forest and nomogram. Aging (Albany NY). 2023;15(5):1475-1495. doi:10.18632/aging.204547 DOI: https://doi.org/10.18632/aging.204547
Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. J Cardiovasc Transl Res. 2021;14(1):13-22. doi:10.1007/s12265-020-09994-3 DOI: https://doi.org/10.1007/s12265-020-09994-3
Sanz RL, Mazzei L, Manucha W. Implications of the transcription factor WT1 linked to the pathologic cardiac remodeling post-myocardial infarction. Implicaciones del factor de transcripción WT1 asociado al remodelado cardiaco patológico postinfarto miocárdico. Clin Investig Arterioscler. 2019;31(3):121-127. doi:10.1016/j.arteri.2018.08.003 DOI: https://doi.org/10.1016/j.arteri.2018.08.003
Ortega A, Gil-Cayuela C, Tarazón E, García-Manzanares M, Montero JA, Cinca J, Portolés M, Rivera M, Roselló-Lletí E. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS One. 2016;11(7):e0160168. doi:10.1371/journal.pone.0160168 DOI: https://doi.org/10.1371/journal.pone.0160168
Xiong F, Li Q, Zhang C, Chen Y, Li P, Wei X, Li Q, Zhou W, Li L, Shang X, et al. Analyses of GATA4, NKX2.5, and TFAP2B genes in subjects from southern China with sporadic congenital heart disease. Cardiovasc Pathol. 2013;22(2):141-145. doi:10.1016/j.carpath.2012.07.001 DOI: https://doi.org/10.1016/j.carpath.2012.07.001
Demetz E, Tymoszuk P, Hilbe R, Volani C, Haschka D, Heim C, Auer K, Lener D, Zeiger LB, Pfeifhofer-Obermair C, et al. The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J. 2020;41(40):3949-3959. doi:10.1093/eurheartj/ehaa140 DOI: https://doi.org/10.1093/eurheartj/ehaa140
Chung IM, Rajakumar G. Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes (Basel). 2016;7(2):6. doi:10.3390/genes7020006 DOI: https://doi.org/10.3390/genes7020006
Lisowska A, Szyszkowska A, Knapp M, Łapińska M, Kondraciuk M, Kamińska I, Hryszko T, Ptaszyńska-Kopczyńska K, Kamiński K. IGFBP7 Concentration May Reflect Subclinical Myocardial Damage and Kidney Function in Patients with Stable Ischemic Heart Disease. Biomolecules. 2022;12(2):274. doi:10.3390/biom12020274 DOI: https://doi.org/10.3390/biom12020274
Zidi I, Kharrat N, Abdelhedi R, Hassine AB, Laaribi AB, Yahia HB, Abdelmoula NB, Abid L, Rebai A, Rizzo R. Nonclassical human leukocyte antigen (HLA-G, HLA-E, and HLA-F) in coronary artery disease. Hum Immunol. 2016;77(4):325-329. doi:10.1016/j.humimm.2016.01.008 DOI: https://doi.org/10.1016/j.humimm.2016.01.008
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, et al. ole of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol. 2022;13:975367. doi:10.3389/fimmu.2022.975367 DOI: https://doi.org/10.3389/fimmu.2022.975367
Pan X, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, et al. Single-cell transcriptomics identifies Col1a1 and Col1a2 as hub genes in obesity-induced cardiac fibrosis. Biochem Biophys Res Commun. 2022;618:30-37. doi:10.1016/j.bbrc.2022.06.018
Zhong Y, Du G, Liu J, Li S, Lin J, Deng G, Wei J, Huang J. RUNX1 and CCL3 in Diabetes Mellitus-Related Coronary Artery Disease: A Bioinformatics Analysis. Int J Gen Med. 2022;15:955-963. doi:10.2147/IJGM.S350732 DOI: https://doi.org/10.2147/IJGM.S350732
Mahendra J, Srinivasan S, Kanakamedala A, D N, Namasivayam A, Mahendra L, Muralidharan J, Cherian SM, Ilango P. Expression of trefoil factor 2 and 3 and adrenomedullin in chronic periodontitis subjects with coronary heart disease. J Periodontol. 2023;94(5):694-703. doi:10.1002/JPER.22-0467 DOI: https://doi.org/10.1002/JPER.22-0467
Cheng Z, Wang J, Su D, Pan H, Huang G, Li X, Li Z, Shen A, Xie X, Wang B, et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet. 2011;130(5):657-662. doi:10.1007/s00439-011-0996-7 DOI: https://doi.org/10.1007/s00439-011-0996-7
Zhang X, Huo Q, Sun W, Zhang C, Wu Z, Xing B, Li Q. Rs2910164 in microRNA‑146a confers an elevated risk of depression in patients with coronary artery disease by modulating the expression of NOS1. Mol Med Rep. 2018;18(1):603-609. doi:10.3892/mmr.2018.8929 DOI: https://doi.org/10.3892/mmr.2018.8929
Li XX, Mu B, Li X, Bie ZD. circCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/m6A and miR-636. J Cardiovasc Transl Res. 2022;15(5):998-1009. doi:10.1007/s12265-022-10209-0 DOI: https://doi.org/10.1007/s12265-022-10209-0
Zhang L, Li M, Wang Z, Sun P, Wei S, Zhang C, Wu H, Bai H. Cardiovascular Risk After SARS-CoV-2 Infection Is Mediated by IL18/IL18R1/HIF-1 Signaling Pathway Axis. Front Immunol. 2022;12:780804. doi:10.3389/fimmu.2021.780804 DOI: https://doi.org/10.3389/fimmu.2021.780804
Wang X, Chow FL, Oka T, Hao L, Lopez-Campistrous A, Kelly S, Cooper S, Odenbach J, Finegan BA, Schulz R, et al. Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation. 2009;119(18):2480-2489. doi:10.1161/CIRCULATIONAHA.108.835488 DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.835488
Agrawal V, Fortune N, Yu S, Fuentes J, Shi F, Nichols D, Gleaves L, Poovey E, Wang TJ, Brittain EL, et al. Natriuretic peptide receptor C contributes to disproportionate right ventricular hypertrophy in a rodent model of obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. Pulm Circ. 2019;9(4):2045894019878599. doi:10.1177/2045894019895452 DOI: https://doi.org/10.1177/2045894019895452
Pan X, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, et al. Single-cell transcriptomics identifies Col1a1 and Col1a2 as hub genes in obesity-induced cardiac fibrosis. Biochem Biophys Res Commun. 2022;618:30-37. doi:10.1016/j.bbrc.2022.06.018 DOI: https://doi.org/10.1016/j.bbrc.2022.06.018
Liu J, Yang W, Li Y, Wei Z, Dan X. ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. BMC Med Genet. 2020;21(1):54. doi:10.1186/s12881-020-0987-4 DOI: https://doi.org/10.1186/s12881-020-0987-4
Zhou Z, Wang J, Guo C, Chang W, Zhuang J, Zhu P, Li X. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease. Cell Rep. 2017;18(4):1019-1032. doi:10.1016/j.celrep.2017.01.002 DOI: https://doi.org/10.1016/j.celrep.2017.01.002
Kamar A, Fahed AC, Shibbani K, El-Hachem N, Bou-Slaiman S, Arabi M, Kurban M, Seidman JG, Seidman CE, Haidar R, et al. A Novel Role for CSRP1 in a Lebanese Family with Congenital Cardiac Defects. Front Genet. 2017;8:217. doi:10.3389/fgene.2017.00217 DOI: https://doi.org/10.3389/fgene.2017.00217
Haohan S, Pussadhamma B, Jumnainsong A, et al. Association of Major Histocompatibility Complex Class I Related Chain A/B Positive Microparticles with Acute Myocardial Infarction and Disease Severity. Diagnostics (Basel). 2020;10(10):766. doi:10.3390/diagnostics10100766 DOI: https://doi.org/10.3390/diagnostics10100766
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, et al. Functional rare variant in a C/EBPbeta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY). 2021;13(23):25393-25407. doi:10.18632/aging.203755 DOI: https://doi.org/10.18632/aging.203755
Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Rouleau JL; et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351(20):2058-2068. doi:10.1056/NEJMoa042739 DOI: https://doi.org/10.1056/NEJMoa042739
Pan Y, Wang ZG, Liu XY, Zhao H, Zhou N, Zheng GF, Qiu XB, Li RG, Yuan F, Shi HY, et al. A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatr Cardiol. 2015;36(7):1400-1410. doi:10.1007/s00246-015-1173-x DOI: https://doi.org/10.1007/s00246-015-1173-x
Dai J, Liu J, Zhang Q, An Y, Xia B, Wan C, Zhang Y, Yu Y, Wang J. Cathepsin C Is Involved in Macrophage M1 Polarization via p38/MAPK Pathway in Sudden Cardiac Death. Cardiovasc Ther. 2021;2021:6139732. doi:10.1155/2021/6139732 DOI: https://doi.org/10.1155/2021/6139732
Wang F, Wu Y. lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis. Mediators Inflamm. 2023;2023:9380398. doi:10.1155/2023/9380398 DOI: https://doi.org/10.1155/2023/9380398
Voudris KV, Apostolakis S, Karyofillis P, Doukas K, Zaravinos A, Androutsopoulos VP, Michalis A, Voudris V, Spandidos DA. Genetic diversity of the KCNE1 gene and susceptibility to postoperative atrial fibrillation. Am Heart J. 2014;167(2):274-280.e1. doi:10.1016/j.ahj.2013.09.020 DOI: https://doi.org/10.1016/j.ahj.2013.09.020
Huscher D, Ebert N, Soerensen-Zender I, Mielke N, Schaeffner E, Schmitt R. Development of a prediction model for mortality and cardiovascular outcomes in older adults taking into account AZGP1. Sci Rep. 2021;11(1):11792. doi:10.1038/s41598-021-91169-4 DOI: https://doi.org/10.1038/s41598-021-91169-4
Mir R, Elfaki I, Jha CK, Javid J, Babakr AT, Banu S, Mir MM, Jamwal D, Khullar N, Alzahrani KJ, et al. Biological and Clinical Implications of TNF-α Promoter and CYP1B1 Gene Variations in Coronary Artery Disease Susceptibility. Cardiovasc Hematol Disord Drug Targets. 2021;21(4):266-277. doi:10.2174/1871529X22666211221151830 DOI: https://doi.org/10.2174/1871529X22666211221151830
Wang F, Zhao H, Yin L, Zhang W, Tang Y, Wang X, Huang C. The paired-related homeobox protein 1 promotes cardiac fibrosis via the Twist1-Prrx1-tenascin-C loop. Cell Biol Int. 2023;47(1):167-177. doi:10.1002/cbin.11944 DOI: https://doi.org/10.1002/cbin.11944
Mackie AR, Losordo DW. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J. 2011;38(5):474-485.
Rathinavel A, Dhandapany PS, Annapoorani P, Ramasamy S, Selvam GS. Cardiac isoform of alpha-2 macroglobulin as a novel diagnostic marker for cardiac diseases. Eur J Cardiovasc Prev Rehabil. 2005;12(6):601-603. doi:10.1097/01.hjr.0000176513.07037.83 DOI: https://doi.org/10.1097/00149831-200512000-00014
Wahlstrand B, Orho-Melander M, Delling L, Kjeldsen S, Narkiewicz K, Almgren P, Hedner T, Melander O. The myocardial infarction associated CDKN2A/CDKN2B locus on chromosome 9p21 is associated with stroke independently of coronary events in patients with hypertension. J Hypertens. 2009;27(4):769-773. doi:10.1097/HJH.0b013e328326f7eb DOI: https://doi.org/10.1097/HJH.0b013e328326f7eb
Sotos-Prieto M, Guillén M, Portolés O, Sorlí JV, González JI, Asensio EM, Corella D. Association between the rs6950982 polymorphism near the SERPINE1 gene and blood pressure and lipid parameters in a high-cardiovascular-risk population: interaction with Mediterranean diet. Genes Nutr. 2013;8(4):401-409. doi:10.1007/s12263-012-0327-1 DOI: https://doi.org/10.1007/s12263-012-0327-1
Krolikoski M, Monslow J, Puré E. The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol. 2019;78-79:201-218. doi:10.1016/j.matbio.2018.05.007 DOI: https://doi.org/10.1016/j.matbio.2018.05.007
Dahlström EH, Saksi J, Forsblom C, Uglebjerg N, Mars N, Thorn LM, Harjutsalo V, Rossing P, Ahluwalia TS, Lindsberg PJ, et al. The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes. Diabetes. 2021;70(10):2391-2401. doi:10.2337/db21-0056 DOI: https://doi.org/10.2337/db21-0056
Shabana NA, Ashiq S, Ijaz A, Khalid F, Saadat IU, Khan K, Sarwar S, Shahid SU. Genetic risk score (GRS) constructed from polymorphisms in the PON1, IL-6, ITGB3, and ALDH2 genes is associated with the risk of coronary artery disease in Pakistani subjects. Lipids Health Dis. 2018;17(1):224. doi:10.1186/s12944-018-0874-6 DOI: https://doi.org/10.1186/s12944-018-0874-6
van der Laan SW, Foroughi Asl H, van den Borne P, van Setten J, van der Perk ME, van de Weg SM, Schoneveld AH, de Kleijn DP, Michoel T, Björkegren JL, et al. Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: the Athero-Express Genomics Study. Atherosclerosis. 2015;239(2):528-538. doi:10.1016/j.atherosclerosis.2015.01.018 DOI: https://doi.org/10.1016/j.atherosclerosis.2015.01.018
Cristo F, Inácio JM, de Almeida S, Mendes P, Martins DS, Maio J, Anjos R, Belo JA. et al. Functional study of DAND5 variant in patients with Congenital Heart Disease and laterality defects. BMC Med Genet. 2017;18(1):77. doi:10.1186/s12881-017-0444-1 DOI: https://doi.org/10.1186/s12881-017-0444-1
Ji Q, Zhang J, Du Y, Zhu E, Wang Z, Que B, Miao H, Shi S, Qin X, Zhao Y, et al. Human epicardial adipose tissue-derived and circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with coronary artery disease. Cardiovasc Diabetol. 2017;16(1):133. doi:10.1186/s12933-017-0612-9 DOI: https://doi.org/10.1186/s12933-017-0612-9
Ukkat J, Hoang-Vu C, Trojanowicz B, Rebelo A. Osteocalcin, Osteopontin and RUNX2 Expression in Patients’ Leucocytes with Arteriosclerosis. Diseases. 2021;9(1):19. doi:10.3390/diseases9010019 DOI: https://doi.org/10.3390/diseases9010019
Schooling CM. Genetic validation of neurokinin 3 receptor antagonists for ischemic heart disease prevention in men - A one-sample Mendelian randomization study. EBioMedicine. 2022;77:103901. doi:10.1016/j.ebiom.2022.103901 DOI: https://doi.org/10.1016/j.ebiom.2022.103901
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol. 2021;161:75-85. doi:10.1016/j.yjmcc.2021.08.001 DOI: https://doi.org/10.1016/j.yjmcc.2021.08.001
Niemiec P, Nowak T, Iwanicki T, Krauze J, Gorczynska-Kosiorz S, Grzeszczak W, Ochalska-Tyka A, Zak I. The -930A>G polymorphism of the CYBA gene is associated with premature coronary artery disease. A case-control study and gene-risk factors interactions. Mol Biol Rep. 2014;41(5):3287-3294. doi:10.1007/s11033-014-3191-9 DOI: https://doi.org/10.1007/s11033-014-3191-9
Bendaya I, Riahi A, Kharat M, Kahla S, Sdiri W, Oueslati R. STAT1 and STAT6 Act as Antagonistic Regulators of PPARγ in Diabetic Patients with and without Cardiovascular Diseases. Clin Lab. 2018;64(3):287-294. doi:10.7754/Clin.Lab.2017.171013 DOI: https://doi.org/10.7754/Clin.Lab.2017.171013
Chen HY, Xiao ZZ, Ling X, Xu RN, Zhu P, Zheng SY. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med. 2021;27(1):14. doi:10.1186/s10020-021-00271-w DOI: https://doi.org/10.1186/s10020-021-00271-w
Page MM, Ellis KL, Chan DC, Pang J, Hooper AJ, Bell DA, Burnett JR, Moses EK, Watts GF. A variant in the fibronectin (FN1) gene, rs1250229-T, is associated with decreased risk of coronary artery disease in familial hypercholesterolaemia. J Clin Lipidol. 2022;16(4):525-529. doi:10.1016/j.jacl.2022.05.065 DOI: https://doi.org/10.1016/j.jacl.2022.05.065
Wang C, Li Q, Yang H, Gao C, Du Q, Zhang C, Zhu L, Li Q. MMP9, CXCR1, TLR6, and MPO participant in the progression of coronary artery disease. J Cell Physiol. 2020;235(11):8283-8292. doi:10.1002/jcp.29485 DOI: https://doi.org/10.1002/jcp.29485
Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, Fa J, Zhang R, Wang F, Xu C, et al. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis. 2016;246:148-156. doi:10.1016/j.atherosclerosis.2016.01.008 DOI: https://doi.org/10.1016/j.atherosclerosis.2016.01.008
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci. 2023;24(7):6136. doi:10.3390/ijms24076136 DOI: https://doi.org/10.3390/ijms24076136
Meng LB, Shan MJ, Qiu Y, Qi R, Yu ZM, Guo P, Di CY, Gong T. TPM2 as a potential predictive biomarker for atherosclerosis. Aging (Albany NY). 2019;11(17):6960-6982. doi:10.18632/aging.102231 DOI: https://doi.org/10.18632/aging.102231
Liu S, Wang X, Yu S, Yan M, Peng Y, Zhang G, Xu Z. A Meta-Analysis on the Association Between TNFSF4 Polymorphisms (rs3861950 T > C and rs1234313 A > G) and Susceptibility to Coronary Artery Disease. Front Physiol. 2020;11:539288. doi:10.3389/fphys.2020.539288 DOI: https://doi.org/10.3389/fphys.2020.539288
Al-U’datt D, Allen BG, Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res. 2019;115(13):1820-1837. doi:10.1093/cvr/cvz176 DOI: https://doi.org/10.1093/cvr/cvz176
Rui H, Zhao F, Yuhua L, Hong J. Suppression of SMOC2 alleviates myocardial fibrosis via the ILK/p38 pathway. Front Cardiovasc Med. 2023;9:951704. doi:10.3389/fcvm.2022.951704 DOI: https://doi.org/10.3389/fcvm.2022.951704
Józefczuk E, Nosalski R, Saju B, Crespo E, Szczepaniak P, Guzik TJ, Siedlinski M. Cardiovascular Effects of Pharmacological Targeting of Sphingosine Kinase 1. Hypertension. 2020;75(2):383-392. doi:10.1161/HYPERTENSIONAHA.119.13450 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.119.13450
Wu DF, Yin RX, Cao XL, Huang F, Wu JZ, Chen WX. MADD-FOLH1 Polymorphisms and Their Haplotypes with Serum Lipid Levels and the Risk of Coronary Heart Disease and Ischemic Stroke in a Chinese Han Population. Nutrients. 2016;8(4):208. doi:10.3390/nu8040208 DOI: https://doi.org/10.3390/nu8040208
Viviani Anselmi C, Briguori C, Roncarati R, Papa L, Visconti G, Focaccio A, De Micco F, Latronico MV, Pagnotta P, Condorelli G. Routine assessment of on-clopidogrel platelet reactivity and gene polymorphisms in predicting clinical outcome following drug-eluting stent implantation in patients with stable coronary artery disease. JACC Cardiovasc Interv. 2013;6(11):1166-1175. doi:10.1016/j.jcin.2013.06.010 DOI: https://doi.org/10.1016/j.jcin.2013.06.010
Durda P, Raffield LM, Lange EM, Olson NC, Jenny NS, Cushman M, Deichgraeber P, Grarup N, Jonsson A, Hansen T, et al. Circulating Soluble CD163, Associations With Cardiovascular Outcomes and Mortality, and Identification of Genetic Variants in Older Individuals: The Cardiovascular Health Study. J Am Heart Assoc. 2022;11(21):e024374. doi:10.1161/JAHA.121.024374 DOI: https://doi.org/10.1161/JAHA.121.024374
Zhuo C, Jiang R, Lin X, Shao M. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget. 2017;8(1):1429-1437. doi:10.18632/oncotarget.13637 DOI: https://doi.org/10.18632/oncotarget.13637
Carvalho VMF, Oliveira PSS, Albuquerque APB, Rêgo MJBM, Rosa MMD, Oliveira DC, Pereira MC, Pitta MGDR. Decreased Serum Levels of Soluble Oncostatin M Receptor (sOSMR) and Glycoprotein 130 (sgp130) in Patients with Coronary Artery Disease. Diminuição dos Níveis Séricos do Receptor Solúvel da Oncostatina M (sOSMR) e Glicoproteína 130 (sgp130) em Pacientes com Doença Arterial Coronariana. Arq Bras Cardiol. 2023;120(4):e20220326. doi:10.36660/abc.20220326 DOI: https://doi.org/10.36660/abc.20220326
Pickering ME, Oris C, Chapurlat R. Periostin in Osteoporosis and Cardiovascular Disease. J Endocr Soc. 2023;7(7):bvad081. doi:10.1210/jendso/bvad081 DOI: https://doi.org/10.1210/jendso/bvad081
Sandoval-Pinto E, Padilla-Gutiérrez JR, Hernández-Bello J, Martínez-Fernández DE, Valdés-Alvarado E, Muñoz-Valle JF, Flores-Salinas HE, Valle Y. Influence of haplotypes, gene expression and soluble levels of L-selectin on the risk of acute coronary syndrome. Gene. 2017;625:31-41. doi:10.1016/j.gene.2017.05.005 DOI: https://doi.org/10.1016/j.gene.2017.05.005
Bengs S, Rossi A, Haberecker M, Mikail N, Meisel A, Haider A, Grämer M, Portmann A, Todorov A, Schönenberger C, et al. Immunoreactivity of the SARS-CoV-2 entry proteins ACE-2 and TMPRSS-2 in murine models of hormonal manipulation, ageing, and cardiac injury. Sci Rep. 2021;11(1):23993. doi:10.1038/s41598-021-03181-3 DOI: https://doi.org/10.1038/s41598-021-03181-3
Celeghin R, Cipriani A, Bariani R, Bueno Marinas M, Cason M, Bevilacqua M, De Gaspari M, Rizzo S, Rigato I, Da Pozzo S, et al. Filamin-C variant-associated cardiomyopathy: A pooled analysis of individual patient data to evaluate the clinical profile and risk of sudden cardiac death. Heart Rhythm. 2022;19(2):235-243. doi:10.1016/j.hrthm.2021.09.029 DOI: https://doi.org/10.1016/j.hrthm.2021.09.029
Guan T, Emschermann F, Schories C, Groga-Bada P, Martus P, Borst O, Gawaz M, Geisler T, Rath D, Chatterjee M. Platelet SR-PSOX/CXCL16-CXCR6 Axis Influences Thrombotic Propensity and Prognosis in Coronary Artery Disease. Int J Mol Sci. 2022;23(19):11066. doi:10.3390/ijms231911066 DOI: https://doi.org/10.3390/ijms231911066
Corbo RM, Scacchi R, Mureddu L, Mulas G, Castrechini S, Rivasi AP. Apolipoprotein B, apolipoprotein E, and angiotensin-converting enzyme polymorphisms in 2 Italian populations at different risk for coronary artery disease and comparison of allele frequencies among European populations. Hum Biol. 1999;71(6):933-945.
Grossman TR, Gamliel A, Wessells RJ, Taghli-Lamallem O, Jepsen K, Ocorr K, Korenberg JR, Peterson KL, Rosenfeld MG, Bodmer R, et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 2011;7(11):e1002344. doi:10.1371/journal.pgen.1002344 DOI: https://doi.org/10.1371/journal.pgen.1002344
Wang M, Wang M, Zhao J, Xu H, Xi Y, Yang H. Dengzhan Shengmai capsule attenuates cardiac fibrosis in post-myocardial infarction rats by regulating LTBP2 and TGF-β1/Smad3 pathway. Phytomedicine. 2023;116:154849. doi:10.1016/j.phymed.2023.154849 DOI: https://doi.org/10.1016/j.phymed.2023.154849
Cheng X, Chen X, Zhang M, Wan Y, Ge S, Cheng X. Sparcl1 and Atherosclerosis. J Inflamm Res. 2023;16:2121-2127. doi:10.2147/JIR.S406907 DOI: https://doi.org/10.2147/JIR.S406907
Zhang Q, Zheng Y, Ning M, Li T. KLRD1, FOSL2 and LILRB3 as potential biomarkers for plaques progression in acute myocardial infarction and stable coronary artery disease. BMC Cardiovasc Disord. 2021;21(1):344. doi:10.1186/s12872-021-01997-5 DOI: https://doi.org/10.1186/s12872-021-01997-5
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol. 2021;9:793605. doi:10.3389/fcell.2021.793605 DOI: https://doi.org/10.3389/fcell.2021.793605
Golimbet VE, Volel’ BA, Dolzhikov AV, Korovaitseva GI, Isaeva MI. Association of 5-HTR2A and 5-HTR2C serotonin receptor gene polymorphisms with depression risk in patients with coronary heart disease. Bull Exp Biol Med. 2014;156(5):680-683. doi:10.1007/s10517-014-2424-1 DOI: https://doi.org/10.1007/s10517-014-2424-1
Petropoulou E, Soltani M, Firoozabadi AD, Namayandeh SM, Crockford J, Maroofian R, Jamshidi Y. Digenic inheritance of mutations in the cardiac troponin (TNNT2) and cardiac beta myosin heavy chain (MYH7) as the cause of severe dilated cardiomyopathy. Eur J Med Genet. 2017;60(9):485-488. doi:10.1016/j.ejmg.2017.06.008 DOI: https://doi.org/10.1016/j.ejmg.2017.06.008
Lönn J, Starkhammar Johansson C, Kälvegren H, Brudin L, Skoglund C, Garvin P, Särndahl E, Ravald N, Richter A, Bengtsson T, et al. Hepatocyte growth factor in patients with coronary artery disease and its relation to periodontal condition. Results Immunol. 2011;2:7-12. doi:10.1016/j.rinim.2011.12.002 DOI: https://doi.org/10.1016/j.rinim.2011.12.002
Ghali R, Altara R, Louch WE, Cataliotti A, Mallat Z, Kaplan A, Zouein FA, Booz GW. IL-33 (Interleukin 33)/sST2 Axis in Hypertension and Heart Failure. Hypertension. 2018;72(4):818-828. doi:10.1161/HYPERTENSIONAHA.118.1115 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.118.11157
Li S, Liu R, Xue M, Qiao Y, Chen Y, Long G, Tian X, Hu Y, Zhou P, Dong X, et al. Spleen tyrosine kinase‑induced JNK‑dependent NLRP3 activation is involved in diabetic cardiomyopathy. Int J Mol Med. 2019;43(6):2481-2490. doi:10.3892/ijmm.2019.4148 DOI: https://doi.org/10.3892/ijmm.2019.4148
Sun X, Zhou M, Wen G, Huang Y, Wu J, Peng L, Jiang W, Yuan H, Lu Y, Cai J. Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. J Am Heart Assoc. 2021;10(1):e016364. doi:10.1161/JAHA.120.016364 DOI: https://doi.org/10.1161/JAHA.120.016364
Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis?. BMC Cardiovasc Disord. 2014;14:56. doi:10.1186/1471-2261-14-56 DOI: https://doi.org/10.1186/1471-2261-14-56
Li N, Wang ZS, Wang XH, Xu YJ, Qiao Q, Li XM, Di RM, Guo XJ, Li RG, Zhang M, et al. A SHOX2 loss-of-function mutation underlying familial atrial fibrillation. Int J Med Sci. 2018;15(13):1564-1572. doi:10.7150/ijms.2742 DOI: https://doi.org/10.7150/ijms.27424
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol. 2022;13:1045501. doi:10.3389/fphar.2022.1045501 DOI: https://doi.org/10.3389/fphar.2022.1045501
Yıldırım A, Kücükosmanoglu M, Koyunsever NY, Cekici Y, Dogdus M, Saracoglu E, Kilic S. Association between serum SCUBE1 levels and thrombus burden in patients with ST-segment elevation myocardial infarction. Acta Cardiol. 2021;76(7):777-784. doi:10.1080/00015385.2020.1852753 DOI: https://doi.org/10.1080/00015385.2020.1852753
Chen H, Yu M, Li M, Zhao R, Zhu Q, Zhou W, Lu M, Lu Y, Zheng T, Jiang J, et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem. 2012;363(1-2):85-91. doi:10.1007/s11010-011-1160-3 DOI: https://doi.org/10.1007/s11010-011-1160-3
Fujimaki T, Kato K, Yokoi K, Oguri M, Yoshida T, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, et al. Association of genetic variants in SEMA3F, CLEC16A, LAMA3, and PCSK2 with myocardial infarction in Japanese individuals. Atherosclerosis. 2010;210(2):468-473. doi:10.1016/j.atherosclerosis.2009.11.050 DOI: https://doi.org/10.1016/j.atherosclerosis.2009.11.050
Connelly JJ, Cherepanova OA, Doss JF, Karaoli T, Lillard TS, Markunas CA, Nelson S, Wang T, Ellis PD, Langford CF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet. 2013;22(25):5107-5120. doi:10.1093/hmg/ddt365 DOI: https://doi.org/10.1093/hmg/ddt365
Brodehl A, Weiss J, Debus JD, Stanasiuk C, Klauke B, Deutsch MA, Fox H, Bax J, Ebbinghaus H, Gärtner A, et al. A homozygous DSC2 deletion associated with arrhythmogenic cardiomyopathy is caused by uniparental isodisomy. J Mol Cell Cardiol. 2020;141:17-29. doi:10.1016/j.yjmcc.2020.03.006 DOI: https://doi.org/10.1016/j.yjmcc.2020.03.006
Singla B, Lin HP, Chen A, Ahn W, Ghoshal P, Cherian-Shaw M, White J, Stansfield BK, Csányi G. Role of R-spondin 2 in arterial lymphangiogenesis and atherosclerosis. Cardiovasc Res. 2021;117(6):1489-1509. doi:10.1093/cvr/cvaa244 DOI: https://doi.org/10.1093/cvr/cvaa244
Macchi C, Greco MF, Favero C, Dioni L, Cantone L, Hoxha M, Vigna L, Solazzo G, Corsini A, Banach M, et al. Associations Among PCSK9 Levels, Atherosclerosis-Derived Extracellular Vesicles, and Their miRNA Content in Adults With Obesity. Front Cardiovasc Med. 2022;8:785250. doi:10.3389/fcvm.2021.785250 DOI: https://doi.org/10.3389/fcvm.2021.785250
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci. 2023;378(1879):20220164. doi:10.1098/rstb.2022.0164 DOI: https://doi.org/10.1098/rstb.2022.0164
Jin D, Han F. FOXF1 ameliorates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts through inhibiting the TGF-β1/Smad3 signaling pathway. J Recept Signal Transduct Res. 2020;40(6):493-500. doi:10.1080/10799893.2020.1772299 DOI: https://doi.org/10.1080/10799893.2020.1772299
Hou J, Huang S, Long Y, Huang J, Yang S, Yao J, Chen G, Yue Y, Liang M, Mei B, et al. DACT2 regulates structural and electrical atrial remodeling in atrial fibrillation. J Thorac Dis. 2020;12(5):2039-2048. doi:10.21037/jtd-19-4206 DOI: https://doi.org/10.21037/jtd-19-4206
Lay E, Azamian MS, Denfield SW, Dreyer W, Spinner JA, Kearney D, Zhang L, Worley KC, Bi W, Lalani SR. LMOD2-related dilated cardiomyopathy presenting in late infancy. Am J Med Genet A. 2022;188(6):1858-1862. doi:10.1002/ajmg.a.62699 DOI: https://doi.org/10.1002/ajmg.a.62699
Chung CM, Lin TH, Chen JW, Leu HB, Yang HC, Ho HY, Ting CT, Sheu SH, Tsai WC, Chen JH, et al. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes. 2011;60(9):2417-2423. doi:10.2337/db10-1321 DOI: https://doi.org/10.2337/db10-1321
Chen H, Cai K. DSCAM-AS1 mediates pro-hypertrophy role of GRK2 in cardiac hypertrophy aggravation via absorbing miR-188-5p. In Vitro Cell Dev Biol Anim. 2020;56(4):286-295. doi:10.1007/s11626-020-00441-w DOI: https://doi.org/10.1007/s11626-020-00441-w
Kim EE, Shekhar A, Lu J, Lin X, Liu FY, Zhang J, Delmar M, Fishman GI. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124(11):5027-5036. doi:10.1172/JCI77495 DOI: https://doi.org/10.1172/JCI77495
Qin L, Rehemuding R, Ainiwaer A, Ma X. Correlation between betatrophin/angiogenin-likeprotein3/lipoprotein lipase pathway and severity of coronary artery disease in Kazakh patients with coronary heart disease. World J Clin Cases. 2022;10(7):2095-2105. doi:10.12998/wjcc.v10.i7.2095 DOI: https://doi.org/10.12998/wjcc.v10.i7.2095
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021;17(10):592-607. doi:10.1038/s41574-021-00529-7 DOI: https://doi.org/10.1038/s41574-021-00529-7
Hong KW, Shin DJ, Lee SH, Son NH, Go MJ, Lim JE, Shin C, Jang Y, Oh B. Common variants in RYR1 are associated with left ventricular hypertrophy assessed by electrocardiogram. Eur Heart J. 2012;33(10):1250-1256. doi:10.1093/eurheartj/ehr267 DOI: https://doi.org/10.1093/eurheartj/ehr267
Sun S, Zou X, Wang D, Liu Y, Zhang Z, Guo J, Lu R, Huang W, Wang S, Li Z, et al. IRGM/Irgm1 deficiency inhibits neutrophil-platelet interactions and thrombosis in experimental atherosclerosis and arterial injury. Biomed Pharmacother. 2023;158:114152. doi:10.1016/j.biopha.2022.114152 DOI: https://doi.org/10.1016/j.biopha.2022.114152
Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in Cardiac Fibrosis. Front Cardiovasc Med. 2017;4:56. doi:10.3389/fcvm.2017.00056 DOI: https://doi.org/10.3389/fcvm.2017.00056
Ma YS, Xie YH, Ma D, Zhang JJ, Liu HJ. Shear stress-induced MMP1 and PDE2A expressions in coronary atherosclerosis. Bratisl Lek Listy. 2021;122(4):287-292. doi:10.4149/BLL_2021_048 DOI: https://doi.org/10.4149/BLL_2021_048
Li Y, Wang DW, Chen Y, Chen C, Guo J, Zhang S, Sun Z, Ding H, Yao Y, Zhou L, et al. Genome-Wide Association and Functional Studies Identify SCML4 and THSD7A as Novel Susceptibility Genes for Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2018;38(4):964-975. doi:10.1161/ATVBAHA.117.310594 DOI: https://doi.org/10.1161/ATVBAHA.117.310594
Wang P, Qin W, Wang P, Huang Y, Liu Y, Zhang R, Li S, Yang Q, Wang X, Chen F, et al. Genomic Variants in NEURL, GJA1 and CUX2 Significantly Increase Genetic Susceptibility to Atrial Fibrillation. Sci Rep. 2018;8(1):3297. doi:10.1038/s41598-018-21611-7 DOI: https://doi.org/10.1038/s41598-018-21611-7
Le Bras A. ROBO4 variants linked to congenital heart defects. Nat Rev Cardiol. 2019;16(2):70. doi:10.1038/s41569-018-0141-6 DOI: https://doi.org/10.1038/s41569-018-0141-6
Elovainio M, Jokela M, Kivimäki M, Pulkki-Råback L, Lehtimäki T, Airla N, Keltikangas-Järvinen L. Genetic variants in the DRD2 gene moderate the relationship between stressful life events and depressive symptoms in adults: cardiovascular risk in young Finns study. Psychosom Med. 2007;69(5):391-395. doi:10.1097/psy.0b013e31806bf365 DOI: https://doi.org/10.1097/psy.0b013e31806bf365
Motovska Z, Kvasnicka J, Widimsky P, Petr R, Hajkova J, Bobcikova P, Osmancik P, Odvodyova D, Katina S. Platelet glycoprotein GP VI 13254C allele is an independent risk factor of premature myocardial infarction. Thromb Res. 2010;125(2):e61-e64. doi:10.1016/j.thromres.2009.09.002 DOI: https://doi.org/10.1016/j.thromres.2009.09.002
Wu H, Cui Y, He C, Gao P, Li Q, Zhang H, Jiang Y, Hu Y, Wei X, et al. Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Sci China Life Sci. 2020;63(11):1665-1677. doi:10.1007/s11427-019-1649-9 DOI: https://doi.org/10.1007/s11427-019-1649-9
Delfín DA, DeAguero JL, McKown EN. The Extracellular Matrix Protein ABI3BP in Cardiovascular Health and Disease. Front Cardiovasc Med. 2019;6:23. doi:10.3389/fcvm.2019.00023 DOI: https://doi.org/10.3389/fcvm.2019.00023
Koch CD, Lee CM, Apte SS. Aggrecan in Cardiovascular Development and Disease. J Histochem Cytochem. 2020;68(11):777-795. doi:10.1369/0022155420952902 DOI: https://doi.org/10.1369/0022155420952902
Pirillo A, Catapano AL, Norata GD. Niemann-Pick C1-Like 1 (NPC1L1) Inhibition and Cardiovascular Diseases. Curr Med Chem. 2016;23(10):983-999. doi:10.2174/0929867323666160229114111 DOI: https://doi.org/10.2174/0929867323666160229114111
Saeidi M, Vahidi Z, Nahayati MA, Rezaiyan MK, Zemorshidi F, Mahdifar M, Hafezi F, Moghadam SM, Saghi E, Akbarpour E, et al. XCL1, a serum biomarker in neurological diseases; HTLV-1-associated myelopathy and multiple sclerosis. Microb Pathog. 2023;174:105962. doi:10.1016/j.micpath.2022.105962 DOI: https://doi.org/10.1016/j.micpath.2022.105962
Bennetts BH, Teutsch SM, Buhler MM, Heard RN, Stewart GJ. HLA-DMB gene and HLA-DRA promoter region polymorphisms in Australian multiple sclerosis patients. Hum Immunol. 1999;60(9):886-893. doi:10.1016/s0198-8859(99)00054-3 DOI: https://doi.org/10.1016/S0198-8859(99)00054-3
Teleshova N, Bao W, Kivisäkk P, Ozenci V, Mustafa M, Link H. Elevated CD40 ligand expressing blood T-cell levels in multiple sclerosis are reversed by interferon-beta treatment. Scand J Immunol. 2000;51(3):312-320. doi:10.1046/j.1365-3083.2000.00688.x DOI: https://doi.org/10.1046/j.1365-3083.2000.00688.x
Asouri M, Alinejad Rokni H, Sahraian MA, Fattahi S, Motamed N, Doosti R, Rahimi H, Lotfi M, Moslemi A, Karimpoor M, et al. Analysis of Single Nucleotide Polymorphisms in HLA-DRA, IL2RA , and HMGB1 Genes in Multiple Sclerosis. Rep Biochem Mol Biol. 2020;9(2):198-208. doi:10.29252/rbmb.9.2.199 DOI: https://doi.org/10.29252/rbmb.9.2.199
Haridy SFA, Shahin NN, Shabayek MI, Selim MM, Abdelhafez MA, Motawi TK. Diagnostic and prognostic value of the RUNXOR/RUNX1 axis in multiple sclerosis. Neurobiol Dis. 2023;178:106032. doi:10.1016/j.nbd.2023.106032 DOI: https://doi.org/10.1016/j.nbd.2023.106032
Gillett A, Thessen Hedreul M, Khademi M, Espinosa A, Beyeen AD, Jagodic M, Kockum I, Harris RA, Olsson T. Interleukin 18 receptor 1 expression distinguishes patients with multiple sclerosis. Mult Scler. 2010;16(9):1056-1065. doi:10.1177/1352458510364634 DOI: https://doi.org/10.1177/1352458510364634
Sorosina M, Peroni S, Mascia E, Santoro S, Osiceanu AM, Ferrè L, Clarelli F, Giordano A, Cannizzaro M, Martinelli Boneschi F, et al. Involvement of NINJ2 Protein in Inflammation and Blood-Brain Barrier Transmigration of Monocytes in Multiple Sclerosis. Genes (Basel). 2022;13(11):1946. doi:10.3390/genes13111946 DOI: https://doi.org/10.3390/genes13111946
Kawajiri M, Mogi M, Higaki N, Matsuoka T, Ohyagi Y, Tsukuda K, Kohara K, Horiuchi M, Miki T, Kira JI. Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler. 2009;15(2):262-265. doi:10.1177/1352458508097923 DOI: https://doi.org/10.1177/1352458508097923
Girgrah N, Letarte M, Becker LE, Cruz TF, Theriault E, Moscarello MA. Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J Neuropathol Exp Neurol. 1991;50(6):779-792. doi:10.1097/00005072-199111000-00009 DOI: https://doi.org/10.1097/00005072-199111000-00009
Zhang Z, Wang L, Sun X, Zhang L, Lu L. Association of IL4 and IL4R polymorphisms with multiple sclerosis susceptibility in Caucasian population: A meta-analysis. J Neurol Sci. 2016;363:107-113. doi:10.1016/j.jns.2016.02.049 DOI: https://doi.org/10.1016/j.jns.2016.02.049
Zheng C, Chen J, Chu F, Zhu J, Jin T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front Mol Neurosci. 2020;12:314. doi:10.3389/fnmol.2019.00314 DOI: https://doi.org/10.3389/fnmol.2019.00314
Vandebergh M, Andlauer TFM, Zhou Y, Mallants K, Held F, Aly L, Taylor BV, Hemmer B, Dubois B, Goris A. Genetic Variation in WNT9B Increases Relapse Hazard in Multiple Sclerosis. Ann Neurol. 2021;89(5):884-894. doi:10.1002/ana.26061 DOI: https://doi.org/10.1002/ana.26061
Stojković L, Stanković A, Djurić T, Dinčić E, Alavantić D, Zivković M. The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings. J Neurol. 2014;261(8):1544-1551. doi:10.1007/s00415-014-7379-7 DOI: https://doi.org/10.1007/s00415-014-7379-7
Alvarez E, Piccio L, Mikesell RJ, Klawiter EC, Parks BJ, Naismith RT, Cross AH. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler. 2013;19(9):1204-1208. doi:10.1177/1352458512473362 DOI: https://doi.org/10.1177/1352458512473362
Eftekharian MM, Noroozi R, Sayad A, Sarrafzadeh S, Toghi M, Azimi T, Komaki A, Mazdeh M, Inoko H, Taheri M, et al. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis. J Neurol Sci. 2016;369:259-262. doi:10.1016/j.jns.2016.08.045 DOI: https://doi.org/10.1016/j.jns.2016.08.045
Nohara S, Ishii A, Yamamoto F, Yanagiha K, Moriyama T, Tozaka N, Miyake Z, Yatsuga S, Koga Y, Hosaka T, et al. GDF-15, a mitochondrial disease biomarker, is associated with the severity of multiple sclerosis. J Neurol Sci. 2019;405:116429. doi:10.1016/j.jns.2019.116429 DOI: https://doi.org/10.1016/j.jns.2019.116429
Davies JL, Thompson S, Kaur-Sandhu H, Sawcer S, Coles A, Ban M, Jones J. Increased THEMIS First Exon Usage in CD4+ T-Cells Is Associated with a Genotype that Is Protective against Multiple Sclerosis. PLoS One. 2016;11(7):e0158327. doi:10.1371/journal.pone.0158327 DOI: https://doi.org/10.1371/journal.pone.0158327
Couturier N, Gourraud PA, Cournu-Rebeix I, Gout C, Bucciarelli F, Edan G, Babron MC, Clerget-Darpoux F, Clanet M, Fontaine B, et al. IFIH1-GCA-KCNH7 locus is not associated with genetic susceptibility to multiple sclerosis in French patients. Eur J Hum Genet. 2009;17(6):844-847. doi:10.1038/ejhg.2008.259 DOI: https://doi.org/10.1038/ejhg.2008.259
Correale J. BTK inhibitors as potential therapies for multiple sclerosis. Lancet Neurol. 2021;20(9):689-691. doi:10.1016/S1474-4422(21)00250-7 DOI: https://doi.org/10.1016/S1474-4422(21)00250-7
Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun Rev. 2010;9(4):233-236. doi:10.1016/j.autrev.2009.08.002 DOI: https://doi.org/10.1016/j.autrev.2009.08.002
Siegmund T, Donner H, Braun J, Usadel KH, Badenhoop K. HLA-DMA and HLA-DMB alleles in German patients with type 1 diabetes mellitus. Tissue Antigens. 1999;54(3):291-294. doi:10.1034/j.1399-0039.1999.540313.x
Maher E, Bachoo M, Elabbady AA, Polosa C, Bégin LR, Collier B, Elhilali MM, Hassouna MM. Vasoactive intestinal peptide and impotence in experimental diabetes mellitus. Br J Urol. 1996;77(2):271-278. doi:10.1046/j.1464-410x.1996.88419.x DOI: https://doi.org/10.1046/j.1464-410X.1996.88419.x
Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M, et al. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res. 2023;10.1038/s41390-023-02811-y. doi:10.1038/s41390-023-02811-y DOI: https://doi.org/10.1038/s41390-023-02811-y
Seijkens T, Kusters P, Engel D, Lutgens E. CD40-CD40L: linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diab Vasc Dis Res. 2013;10(2):115-122. doi:10.1177/1479164112455817 DOI: https://doi.org/10.1177/1479164112455817
Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D, Maegawa H, Kashiwagi A, Babazono T, Matsuda M, et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet. 2005;50(6):283-292. doi:10.1007/s10038-005-0253-9 DOI: https://doi.org/10.1007/s10038-005-0253-9
Barton JC, Acton RT. Diabetes in HFE Hemochromatosis. J Diabetes Res. 2017;2017:9826930. doi:10.1155/2017/9826930 DOI: https://doi.org/10.1155/2017/9826930
Gu HF, Gu T, Hilding A, Zhu Y, Kärvestedt L, Ostenson CG, Lai M, Kutsukake M, Frystyk J, Tamura K, et al. Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in Swedish subjects with and without type 2 diabetes. Clin Epigenetics. 2013;5(1):20. doi:10.1186/1868-7083-5-20 DOI: https://doi.org/10.1186/1868-7083-5-20
Campbell CD, Lyon HN, Nemesh J, Drake JA, Tuomi T, Gaudet D, Zhu X, Cooper RS, Ardlie KG, Groop LC, et al. Association studies of BMI and type 2 diabetes in the neuropeptide Y pathway: a possible role for NPY2R as a candidate gene for type 2 diabetes in men. Diabetes. 2007;56(5):1460-1467. doi:10.2337/db06-1051 DOI: https://doi.org/10.2337/db06-1051
Yahya MJ, Ismail PB, Nordin NB, Akim ABM, Yusuf WSBM, Adam NLB, Yusoff MJ. Association of CCL2, CCR5, ELMO1, and IL8 Polymorphism with Diabetic Nephropathy in Malaysian Type 2 Diabetic Patients. Int J Chronic Dis. 2019;2019:2053015. doi:10.1155/2019/2053015 DOI: https://doi.org/10.1155/2019/2053015
Cui F, Hu M, Li R, Li B, Huang D, Ma W, Jia X, Lv Z. Insulin on changes in expressions of aquaporin-1, aquaporin-5, and aquaporin-8 in submandibular salivary glands of rats with Streptozotocin-induced diabetes. Int J Clin Exp Pathol. 2021;14(2):221-229.
Siegmund T, Donner H, Braun J, Usadel KH, Badenhoop K. HLA-DMA and HLA-DMB alleles in German patients with type 1 diabetes mellitus. Tissue Antigens. 1999;54(3):291-294. doi:10.1034/j.1399-0039.1999.540313.x DOI: https://doi.org/10.1034/j.1399-0039.1999.540313.x
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides. 2023;160:170923. doi:10.1016/j.peptides.2022.170923 DOI: https://doi.org/10.1016/j.peptides.2022.170923
Surendran S, Matalon R, Tyring SK. Upregulation of aspartoacylase activity in the duodenum of obesity induced diabetes mouse: implications on diabetic neuropathy. Biochem Biophys Res Commun. 2006;345(3):973-975. doi:10.1016/j.bbrc.2006.04.179 DOI: https://doi.org/10.1016/j.bbrc.2006.04.179
Song P, Huang W, Onishi A, Patel R, Kim YC, van Ginkel C, Fu Y, Freeman B, Koepsell H, Thomson S, et al. Knockout of Na+-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration. Am J Physiol Renal Physiol. 2019;317(1):F207-F217. doi:10.1152/ajprenal.00120.2019 DOI: https://doi.org/10.1152/ajprenal.00120.2019
Lamin V, Verry J, Eigner-Bybee I, Fuqua JD, Wong T, Lira VA, Dokun AO. Modulation of miR-29a and ADAM12 Reduces Post-Ischemic Skeletal Muscle Injury and Improves Perfusion Recovery and Skeletal Muscle Function in a Mouse Model of Type 2 Diabetes and Peripheral Artery Disease. Int J Mol Sci. 2021;23(1):429. doi:10.3390/ijms23010429 DOI: https://doi.org/10.3390/ijms23010429
Prickett TCR, Lunt H, Warwick J, Heenan HF, Espiner EA. Urinary Amino-Terminal Pro-C-Type Natriuretic Peptide: A Novel Marker of Chronic Kidney Disease in Diabetes. Clin Chem. 2019;65(10):1248-1257. doi:10.1373/clinchem.2019.306910 DOI: https://doi.org/10.1373/clinchem.2019.306910
Lin G, Wan X, Liu D, Wen Y, Yang C, Zhao C. COL1A1 as a potential new biomarker and therapeutic target for type 2 diabetes. Pharmacol Res. 2021;165:105436. doi:10.1016/j.phrs.2021.105436 DOI: https://doi.org/10.1016/j.phrs.2021.105436
Bućan K, Ivanisević M, Zemunik T, Boraska V, Skrabić V, Vatavuk Z, Galetović D, Znaor L. Retinopathy and nephropathy in type 1 diabetic patients--association with polymorphysms of vitamin D-receptor, TNF, Neuro-D and IL-1 receptor 1 genes. Coll Antropol. 2009;33 Suppl 2:99-105.
Szabó E, Kulin A, Mózner O, Korányi L, Literáti-Nagy B, Vitai M, Cserepes J, Sarkadi B, Várady G. Potential role of the ABCG2-Q141K polymorphism in type 2 diabetes. PLoS One. 2021;16(12):e0260957. doi:10.1371/journal.pone.0260957 DOI: https://doi.org/10.1371/journal.pone.0260957
Arzu Ergen H, Hatemi H, Agachan B, Camlica H, Isbir T. Angiotensin-I converting enzyme gene polymorphism in Turkish type 2 diabetic patients. Exp Mol Med. 2004;36(4):345-350. doi:10.1038/emm.2004.45 DOI: https://doi.org/10.1038/emm.2004.45
Yamashita A, Nishihira K, Matsuura Y, Ito T, Kawahara K, Hatakeyama K, Hashiguchi T, Maruyama I, Yagi H, Matsumoto M, et al. Paucity of CD34-positive cells and increased expression of high-mobility group box 1 in coronary thrombus with type 2 diabetes mellitus. Atherosclerosis. 2012;224(2):511-514. doi:10.1016/j.atherosclerosis.2012.07.027 DOI: https://doi.org/10.1016/j.atherosclerosis.2012.07.027
Varney MD, Valdes AM, Carlson JA, Noble JA, Tait BD, Bonella P, Lavant E, Fear AL, Louey A, Moonsamy P, et al. HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2010;59(8):2055-2062. doi:10.2337/db09-0680 DOI: https://doi.org/10.2337/db09-0680
Deckmyn O, Poynard T, Bedossa P, Paradis V, Peta V, Pais R, Ratziu V, Thabut D, Brzustowski A, Gautier JF, et al. Clinical Interest of Serum Alpha-2 Macroglobulin, Apolipoprotein A1, and Haptoglobin in Patients with Non-Alcoholic Fatty Liver Disease, with and without Type 2 Diabetes, before or during COVID-19. Biomedicines. 2022;10(3):699. doi:10.3390/biomedicines10030699 DOI: https://doi.org/10.3390/biomedicines10030699
Gohn CR, Blue EK, Sheehan BM, Varberg KM, Haneline LS. Mesenchyme Homeobox 2 Enhances Migration of Endothelial Colony Forming Cells Exposed to Intrauterine Diabetes Mellitus. J Cell Physiol. 2017;232(7):1885-1892. doi:10.1002/jcp.25734 DOI: https://doi.org/10.1002/jcp.25734
Kahoul Y, Oger F, Montaigne J, Froguel P, Breton C, Annicotte JS. Emerging Roles for the INK4a/ARF (CDKN2A) Locus in Adipose Tissue: Implications for Obesity and Type 2 Diabetes. Biomolecules. 2020;10(9):1350. doi:10.3390/biom10091350 DOI: https://doi.org/10.3390/biom10091350
Kaur P, Reis MD, Couchman GR, Forjuoh SN, Greene JF, Asea A. SERPINE 1 Links Obesity and Diabetes: A Pilot Study. J Proteomics Bioinform. 2010;3(6):191-199. doi:10.4172/jpb.1000139 DOI: https://doi.org/10.4172/jpb.1000139
Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(18):7049-7054. doi:10.1073/pnas.1114513109 DOI: https://doi.org/10.1073/pnas.1114513109
Li H, Song D, Liu Q, Li L, Sun X, Guo J, Li D, Li P. miR-351 promotes atherosclerosis in diabetes by inhibiting the ITGB3/PIK3R1/Akt pathway and induces endothelial cell injury and lipid accumulation. Mol Med. 2022;28(1):120. doi:10.1186/s10020-022-00547-9 DOI: https://doi.org/10.1186/s10020-022-00547-9
Liu D, Liu L, Hu Z, Song Z, Wang Y, Chen Z. Evaluation of the oxidative stress-related genes ALOX5, ALOX5AP, GPX1, GPX3 and MPO for contribution to the risk of type 2 diabetes mellitus in the Han Chinese population. Diab Vasc Dis Res. 2018;15(4):336-339. doi:10.1177/1479164118755044 DOI: https://doi.org/10.1177/1479164118755044
Brix JM, Krzizek EC, Hoebaus C, Ludvik B, Schernthaner G, Schernthaner GH. Secreted Frizzled-Related Protein 4 (SFRP4) is Elevated in Patients with Diabetes Mellitus. Horm Metab Res. 2016;48(5):345-348. doi:10.1055/s-0041-111698 DOI: https://doi.org/10.1055/s-0041-111698
Liao J, Li Y, Gui X, Zhang Y, Hu X, Cheng L, Hu W, Bai F. erum Isthmin-1 Was Increased in Type 2 Diabetic Patients but Not in Diabetic Sensorimotor Peripheral Neuropathy. Diabetes Metab Syndr Obes. 2023;16:2013-2024. doi:10.2147/DMSO.S411127 DOI: https://doi.org/10.2147/DMSO.S411127
Erlich HA, Lohman K, Mack SJ, Valdes AM, Julier C, Mirel D, Noble JA, Morahan GE, Rich SS. Association analysis of SNPs in the IL4R locus with type I diabetes. Genes Immun. 2009;10 Suppl 1(Suppl 1):S33-S41. doi:10.1038/gene.2009.89 DOI: https://doi.org/10.1038/gene.2009.89
Zhang G, Li H, Zhao W, Li M, Tian L, Ju W, Li X. miR-205 regulates bone turnover in elderly female patients with type 2 diabetes mellitus through targeted inhibition of Runx2. Exp Ther Med. 2020;20(2):1557-1565. doi:10.3892/etm.2020.8867 DOI: https://doi.org/10.3892/etm.2020.8867
Su X, Zhou P, Qi Y. Down-regulation of LCN2 attenuates retinal vascular dysfunction and caspase-1-mediated pyroptosis in diabetes mellitus. Ann Transl Med. 2022;10(12):695. doi:10.21037/atm-22-2655 DOI: https://doi.org/10.21037/atm-22-2655
Kim SH, Cleary MM, Fox HS, Chantry D, Sarvetnick N. CCR4-bearing T cells participate in autoimmune diabetes. J Clin Invest. 2002;110(11):1675-1686. doi:10.1172/JCI15547 DOI: https://doi.org/10.1172/JCI15547
Duan Y, Dai H, An Y, Cheng L, Shi L, Lv Y, Li H, Wang C, He C, Zhang H, et al. Mulberry Leaf Flavonoids Inhibit Liver Inflammation in Type 2 Diabetes Rats by Regulating TLR4/MyD88/NF-κB Signaling Pathway. Evid Based Complement Alternat Med. 2022;2022:3354062. doi:10.1155/2022/3354062 DOI: https://doi.org/10.1155/2022/3354062
Xiu L, Lin M, Liu W, Kong D, Liu Z, Zhang Y, Ouyang P, Liang Y, Zhong S, Chen C, et al. Association of DRD3, COMT, and SLC6A4 Gene Polymorphisms with Type 2 Diabetes in Southern Chinese: A Hospital-Based Case-Control Study. Diabetes Technol Ther. 2015;17(8):580-586. doi:10.1089/dia.2014.0344 DOI: https://doi.org/10.1089/dia.2014.0344
Homann D, Holz A, Bot A, Coon B, Wolfe T, Petersen J, Dyrberg TP, Grusby MJ, von Herrath MG. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity. 1999;11(4):463-472. doi:10.1016/s1074-7613(00)80121-1 DOI: https://doi.org/10.1016/S1074-7613(00)80121-1
Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, Oliveira MC, Pereira SS, Teixeira AL, Alvarez-Leite JI, et al. Proresolving protein Annexin A1: The role in type 2 diabetes mellitus and obesity. Biomed Pharmacother. 2018;103:482-489. doi:10.1016/j.biopha.2018.04.024 DOI: https://doi.org/10.1016/j.biopha.2018.04.024
Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W, Li Y, Wang Q. Caveolin-1 Alleviates Diabetes-Associated Cognitive Dysfunction Through Modulating Neuronal Ferroptosis-Mediated Mitochondrial Homeostasis. Antioxid Redox Signal. 2022;37(13-15):867-886. doi:10.1089/ars.2021.0233 DOI: https://doi.org/10.1089/ars.2021.0233
Zhang X, Lv H, Mei J, Ji B, Huang S, Li X. The Potential Role of R4 Regulators of G Protein Signaling (RGS) Proteins in Type 2 Diabetes Mellitus. Cells. 2022;11(23):3897. doi:10.3390/cells11233897 DOI: https://doi.org/10.3390/cells11233897
Liu K, Sun T, Luan Y, Chen Y, Song J, Ling L, Yuan P, Li R, Cui K, Ruan Y, et al. Berberine ameliorates erectile dysfunction in rats with streptozotocin-induced diabetes mellitus through the attenuation of apoptosis by inhibiting the SPHK1/S1P/S1PR2 and MAPK pathways. Andrology. 2022;10(2):404-418. doi:10.1111/andr.13119 DOI: https://doi.org/10.1111/andr.13119
Dawed AY, Donnelly L, Tavendale R, Carr F, Leese G, Palmer CN, Pearson ER, Zhou K. CYP2C8 and SLCO1B1 Variants and Therapeutic Response to Thiazolidinediones in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(11):1902-1908. doi:10.2337/dc15-2464 DOI: https://doi.org/10.2337/dc15-2464
Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J Diabetes Complications. 2022;36(4):108150. doi:10.1016/j.jdiacomp.2022.108150 DOI: https://doi.org/10.1016/j.jdiacomp.2022.108150
Luo Y, Qu H, Wang H, Wei H, Wu J, Duan Y, Liu D, Deng H. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters. Mediators Inflamm. 2016;2016:6423637. doi:10.1155/2016/6423637 DOI: https://doi.org/10.1155/2016/6423637
Stavarachi M, Panduru NM, Serafinceanu C, Moţa E, Moţa M, Cimponeriu D, Ion DA. Investigation of P213S SELL gene polymorphism in type 2 diabetes mellitus and related end stage renal disease. A case-control study. Rom J Morphol Embryol. 2011;52(3 Suppl):995-998.
Kumar A, Faiq MA, Pareek V, Raza K, Narayan RK, Prasoon P, Kumar P, Kulandhasamy M, Kumari C, Kant K, et al. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Med Hypotheses. 2020;144:110271. doi:10.1016/j.mehy.2020.110271 DOI: https://doi.org/10.1016/j.mehy.2020.110271
Zhou F, Wang J, Wang K, Zhu X, Pang R, Li X, Zhu G, Pan X. Serum CXCL16 as a Novel Biomarker of Coronary Artery Disease in Type 2 Diabetes Mellitus: a Pilot Study. Ann Clin Lab Sci. 2016;46(2):184-189.
Pan S, Li M, Yu H, Xie Z, Li X, Duan X, Huang G, Zhou Z. microRNA-143-3p contributes to inflammatory reactions by targeting FOSL2 in PBMCs from patients with autoimmune diabetes mellitus. Acta Diabetol. 2021;58(1):63-72. doi:10.1007/s00592-020-01591-9 DOI: https://doi.org/10.1007/s00592-020-01591-9
Wang XY, Zhang XZ, Li F, Ji QR. MiR-128-3p accelerates cardiovascular calcification and insulin resistance through ISL1-dependent Wnt pathway in type 2 diabetes mellitus rats. J Cell Physiol. 2019;234(4):4997-5010. doi:10.1002/jcp.27300 DOI: https://doi.org/10.1002/jcp.27300
Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne). 2018;9:503. doi:10.3389/fendo.2018.00503 DOI: https://doi.org/10.3389/fendo.2018.00503
Talmud PJ, Cooper JA, Gaunt T, Holmes MV, Shah S, Palmen J, Drenos F, Shah T, Kumari M, Kivimaki M, et al. Variants of ADRA2A are associated with fasting glucose, blood pressure, body mass index and type 2 diabetes risk: meta-analysis of four prospective studies. Diabetologia. 2011;54(7):1710-1719. doi:10.1007/s00125-011-2108-6 DOI: https://doi.org/10.1007/s00125-011-2108-6
Zhang K, Yang J, Ao N, Jin S, Qi R, Shan F, Du J.Methionine enkephalin (MENK) regulates the immune pathogenesis of type 2 diabetes mellitus via the IL-33/ST2 pathway. Int Immunopharmacol. 2019;73:23-40. doi:10.1016/j.intimp.2019.04.05 DOI: https://doi.org/10.1016/j.intimp.2019.04.054
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides. 2023;165:171003. doi:10.1016/j.peptides.2023.171003 DOI: https://doi.org/10.1016/j.peptides.2023.171003
Feng X, Scott A, Wang Y, Wang L, Zhao Y, Doerner S, Satake M, Croniger CM, Wang Z. PTPRT regulates high-fat diet-induced obesity and insulin resistance. PLoS One. 2014;9(6):e100783. doi:10.1371/journal.pone.0100783 DOI: https://doi.org/10.1371/journal.pone.0100783
Kochetova OV, Avzaletdinova DS, Korytina GF, Morugova TV, Mustafina OE. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus. Mol Biol Rep. 2020;47(3):2035-2046. doi:10.1007/s11033-020-05304-x DOI: https://doi.org/10.1007/s11033-020-05304-x
Sun L, Deng H, He L, Hu X, Huang Q, Xue J, Chen J, Shi X, Xu Y. The relationship between NR2E1 and subclinical inflammation in newly diagnosed type 2 diabetic patients. J Diabetes Complications. 2015;29(4):589-594. doi:10.1016/j.jdiacomp.2014.12.018 DOI: https://doi.org/10.1016/j.jdiacomp.2014.12.018
Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ. Chemokine Like Receptor-1 (CMKLR-1) Receptor: A Potential Therapeutic Target in Management of Chemerin Induced Type 2 Diabetes Mellitus and Cancer. Curr Pharm Des. 2017;23(25):3689-3698. doi:10.2174/1381612823666170616081256 DOI: https://doi.org/10.2174/1381612823666170616081256
Russ-Silsby J, Patel KA, Laver TW, Hawkes G, Johnson MB, Wakeling MN, Patil PP, Hattersley AT, Flanagan SE, Weedon MN, et al. The Role of ONECUT1 Variants in Monogenic and Type 2 Diabetes Mellitus. Diabetes. 2023;db230498. doi:10.2337/db23-0498 DOI: https://doi.org/10.2337/db23-0498
Soraia Aguiar de Melo Dias R, Carlos Mourão Pinho R, Almeida FR, Alfredo Farias Bandeira F, Celerino da Silva R, Crovella S, de Carvalho Farias Vajgel B, Cimões R. Evaluation of DEFB1 polymorphisms in individuals with chronic periodontitis and diabetes mellitus type 2 in a population of northeastern Brazil. Spec Care Dentist. 2018;38(4):227-233. doi:10.1111/scd.12296 DOI: https://doi.org/10.1111/scd.12296
Aly HH, De Franco E, Flanagan SE, Elhenawy YI. MNX1 mutations causing neonatal diabetes: Review of the literature and report of a case with extra-pancreatic congenital defects presenting in severe diabetic ketoacidosis. J Diabetes Investig. 2023;14(4):516-521. doi:10.1111/jdi.13968 DOI: https://doi.org/10.1111/jdi.13968
Chang WW, Zhang L, Yao XM, Chen Y, Zhu LJ, Fang ZM, Zhao Y, Yao YS, Jin YL. Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: a case-control study. Mol Cell Biochem. 2020;473(1-2):93-99. doi:10.1007/s11010-020-03810-x DOI: https://doi.org/10.1007/s11010-020-03810-x
González-Domínguez Á, Visiedo F, Domínguez-Riscart J, Durán-Ruiz MC, Saez-Benito A, Lechuga-Sancho AM, Mateos RM. Catalase post-translational modifications as key targets in the control of erythrocyte redox homeostasis in children with obesity and insulin resistance. Free Radic Biol Med. 2022;191:40-47. doi:10.1016/j.freeradbiomed.2022.08.017 DOI: https://doi.org/10.1016/j.freeradbiomed.2022.08.017
Hsu LA, Teng MS, Wu S, Chou HH, Ko YL. Common and Rare PCSK9 Variants Associated with Low-Density Lipoprotein Cholesterol Levels and the Risk of Diabetes Mellitus: A Mendelian Randomization Study. Int J Mol Sci. 2022;23(18):10418. doi:10.3390/ijms231810418 DOI: https://doi.org/10.3390/ijms231810418
Ding Y, Kantarci A, Badwey JA, Hasturk H, Malabanan A, Van Dyke TE. Phosphorylation of pleckstrin increases proinflammatory cytokine secretion by mononuclear phagocytes in diabetes mellitus. J Immunol. 2007;179(1):647-654. doi:10.4049/jimmunol.179.1.647 DOI: https://doi.org/10.4049/jimmunol.179.1.647
Awazawa M, Gabel P, Tsaousidou E, Nolte H, Krüger M, Schmitz J, Ackermann PJ, Brandt C, Altmüller J, Motameny S, et al. A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat Med. 2017;23(12):1466-1473. doi:10.1038/nm.4420 DOI: https://doi.org/10.1038/nm.4420
Karnes JH, McDonough CW, Gong Y, Vo TT, Langaee TY, Chapman AB, Gums JG, Beitelshees AL, Bailey KR, Del-Aguila JL, et al. Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment. Pharmacogenomics J. 2013;13(5):430-436. doi:10.1038/tpj.2012.34 DOI: https://doi.org/10.1038/tpj.2012.34
Chiarelli F, Pomilio M, Mohn A, Tumini S, Verrotti A, Mezzetti A, Cipollone F, Wasniewska M, Morgese G, Spagnoli A. Serum angiogenin concentrations in young patients with diabetes mellitus. Eur J Clin Invest. 2002;32(2):110-114. doi:10.1046/j.0014-2972.2001.00958.x DOI: https://doi.org/10.1046/j.0014-2972.2001.00958.x
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Nadwa EH, Albogami SM, Alorabi M, Saad HM, Batiha GE. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: A hidden treasure. J Diabetes. 2022;14(12):806-814. doi:10.1111/1753-0407.13334 DOI: https://doi.org/10.1111/1753-0407.13334
Zbidi H, López JJ, Amor NB, Bartegi A, Salido GM, Rosado JA. Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells Mol Dis. 2009;43(2):211-213. doi:10.1016/j.bcmd.2009.04.005 DOI: https://doi.org/10.1016/j.bcmd.2009.04.005
Söderstrøm I, Bergman ML, Colucci F, Lejon K, Bergqvist I, Holmberg D. Establishment and characterization of RAG-2 deficient non-obese diabetic mice. Scand J Immunol. 1996;43(5):525-530. doi:10.1046/j.1365-3083.1996.d01-70.x DOI: https://doi.org/10.1046/j.1365-3083.1996.d01-70.x
Abdelsaid M, Coucha M, Hafez S, Yasir A, Johnson MH, Ergul A. Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia. 2017;60(4):740-750. doi:10.1007/s00125-017-4214-6 DOI: https://doi.org/10.1007/s00125-017-4214-6
Britsemmer JH, Krause C, Taege N, Geißler C, Lopez-Alcantara N, Schmidtke L, Naujack AM, Wagner J, Wolter S, Mann O, et al. Fatty Acid Induced Hypermethylation in the Slc2a4 Gene in Visceral Adipose Tissue Is Associated to Insulin-Resistance and Obesity. Int J Mol Sci. 2023;24(7):6417.doi:10.3390/ijms24076417 DOI: https://doi.org/10.3390/ijms24076417
Ramos-Lopez O, Mejia-Godoy R, Frías-Delgadillo KJ, Torres-Valadez R, Flores-García A, Sánchez-Enríquez S, Aguiar-García P, Martínez-López E, Zepeda-Carrillo EA.Interactions between DRD2/ANKK1 TaqIA Polymorphism and Dietary Factors Influence Plasma Triglyceride Concentrations in Diabetic Patients from Western Mexico: A Cross-sectional Study. Nutrients. 2019;11(12):2863. doi:10.3390/nu11122863 DOI: https://doi.org/10.3390/nu11122863
Arthur JF, Shen Y, Chen Y, Qiao J, Ni R, Lu Y, Andrews RK, Gardiner EE, Cheng J. Exacerbation of glycoprotein VI-dependent platelet responses in a rhesus monkey model of Type 1 diabetes. J Diabetes Res. 2013;2013:370212. doi:10.1155/2013/370212 DOI: https://doi.org/10.1155/2013/370212
Li JY, Tao F, Wu XX, Tan YZ, He L, Lu H. Common RASGRP1 Gene Variants That Confer Risk of Type 2 Diabetes. Genet Test Mol Biomarkers. 2015;19(8):439-443. doi:10.1089/gtmb.2015.0005 DOI: https://doi.org/10.1089/gtmb.2015.0005
Vennekens R, Mesuere M, Philippaert K. TRPM5 in the battle against diabetes and obesity. Acta Physiol (Oxf). 2018;222(2):10.1111/apha.12949. doi:10.1111/apha.12949 DOI: https://doi.org/10.1111/apha.12949
Labonté ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE, Davies JP, Ioannou YA, Tso P, Hui DY, Howles PN. et al. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1-/- mice. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G776-G783. doi:10.1152/ajpgi.90275.2008 DOI: https://doi.org/10.1152/ajpgi.90275.2008
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, et al. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol. 2020;37:101723. doi:10.1016/j.redox.2020.101723 DOI: https://doi.org/10.1016/j.redox.2020.101723
Yokoyama A, Mizukami T, Matsui T, Yokoyama T, Kimura M, Matsushita S, Higuchi S, Maruyama K. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Alcohol Clin Exp Res. 2013;37(8):1391-1401. doi:10.1111/acer.12108 DOI: https://doi.org/10.1111/acer.12108
Mauri MC, Rudelli R, Vanni S, Panza G, Sicaro A, Audisio D, Sacerdote P, Panerai AE. Cholecystokinin, beta-endorphin and vasoactive intestinal peptide in peripheral blood mononuclear cells of drug-naive schizophrenic patients treated with haloperidol compared to healthy controls. Psychiatry Res. 1998;78(1-2):45-50. doi:10.1016/s0165-1781(97)00145-5 DOI: https://doi.org/10.1016/S0165-1781(97)00145-5
Buretić-Tomljanović A, Vraneković J, Rubeša G, Jonovska S, Tomljanović D, Sendula-Jengić V, Kapović M, Ristić S. HFE mutations and transferrin C1/C2 polymorphism among Croatian patients with schizophrenia and schizoaffective disorder. Mol Biol Rep. 2012;39(3):2253-2258. doi:10.1007/s11033-011-0974-0 DOI: https://doi.org/10.1007/s11033-011-0974-0
Fernández-Pereira C, Penedo MA, Rivera-Baltanas T, Fernández-Martínez R, Ortolano S, Olivares JM, Agís-Balboa RC. Insulin-like Growth Factor 2 (IGF-2) and Insulin-like Growth Factor Binding Protein 7 (IGFBP-7) Are Upregulated after Atypical Antipsychotics in Spanish Schizophrenia Patients. Int J Mol Sci. 2022;23(17):9591.doi:10.3390/ijms23179591 DOI: https://doi.org/10.3390/ijms23179591
Chung HJ, Lee JY, Deocaris CC, Min H, Kim SH, Kim MH. Mouse Homologue of the Schizophrenia Susceptibility Gene ZNF804A as a Target of Hoxc8. J Biomed Biotechnol. 2010;2010:231708. doi:10.1155/2010/231708 DOI: https://doi.org/10.1155/2010/231708
Xiong Y, Wei Z, Huo R, Wu X, Shen L, Li Y, Gong X, Wu Z, Feng G, Li W, et al. A pharmacogenetic study of risperidone on chemokine (C-C motif) ligand 2 (CCL2) in Chinese Han schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:153-158. doi:10.1016/j.pnpbp.2014.01.017 DOI: https://doi.org/10.1016/j.pnpbp.2014.01.017
Sargazi S, Heidari Nia M, Sheervalilou R, Mirinejad S, Harati-Sadegh M, Moudi M, Saravani R, Shakiba M. Relationship between Single Nucleotide Polymorphisms of GRHL3 and Schizophrenia Susceptibility: A Preliminary Case-Control Study and Bioinformatics Analysis. Int J Mol Cell Med. 2020;9(2):154-164. doi:10.22088/IJMCM.BUMS.9.2.154
Ahmed SSSJ, Akram Husain RS, Suresh Kumar, Ramakrishnan V. Association Between NOS1 Gene Polymorphisms and Schizophrenia in Asian and Caucasian Populations: A Meta-Analysis. Neuromolecular Med. 2017;19(2-3):452-461. doi:10.1007/s12017-017-8460-z DOI: https://doi.org/10.1007/s12017-017-8460-z
Farkas N, Lendeckel U, Dobrowolny H, Funke S, Steiner J, Keilhoff G, Schmitt A, Bogerts B, Bernstein HG. Reduced density of ADAM 12-immunoreactive oligodendrocytes in the anterior cingulate white matter of patients with schizophrenia. World J Biol Psychiatry. 2010;11(3):556-566. doi:10.3109/15622970903497936 DOI: https://doi.org/10.3109/15622970903497936
Sayad A, Ghafouri-Fard S, Omrani MD, Taheri M. Associations Between Two Single-Nucleotide Polymorphisms in NINJ2 Gene and Risk of Psychiatric Disorders. J Mol Neurosci. 2020;70(2):236-245. doi:10.1007/s12031-019-01462-1 DOI: https://doi.org/10.1007/s12031-019-01462-1
Mohite S, de Campos-Carli SM, Rocha NP, Sharma S, Miranda AS, Barbosa IG, Salgado JV, Simoes-E-Silva AC, Teixeira AL. Lower circulating levels of angiotensin-converting enzyme (ACE) in patients with schizophrenia. Schizophr Res. 2018;202:50-54. doi:10.1016/j.schres.2018.06.023 DOI: https://doi.org/10.1016/j.schres.2018.06.023
Ping LY, Chuang YA, Hsu SH, Tsai HY, Cheng MC. Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia. Genes (Basel). 2016;7(11):102. doi:10.3390/genes7110102 DOI: https://doi.org/10.3390/genes7110102
Grubor M, Zivkovic M, Sagud M, Nikolac Perkovic M, Mihaljevic-Peles A, Pivac N, Muck-Seler D, Svob Strac D. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 Gene Polymorphisms and Extrapyramidal Side Effects in Haloperidol-Treated Patients with Schizophrenia. Int J Mol Sci. 2020;21(7):2345.. doi:10.3390/ijms21072345
Löffler S, Klimke A, Kronenwett R, Kobbe G, Haas R, Fehsel K. Clozapine mobilizes CD34+ hematopoietic stem and progenitor cells and increases plasma concentration of interleukin 6 in patients with schizophrenia. J Clin Psychopharmacol. 2010;30(5):591-595. doi:10.1097/JCP.0b013e3181eeb7f7 DOI: https://doi.org/10.1097/JCP.0b013e3181eeb7f7
Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, Barchas JD, Myers RM, Watson SJ, Akil H, et al. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders. Microarrays (Basel). 2016;5(1):6. doi:10.3390/microarrays5010006 DOI: https://doi.org/10.3390/microarrays5010006
Wei Z, Wang L, Xuan J, Che R, Du J, Qin S, Xing Y, Gu B, Yang L, Li H, et al. Association analysis of serotonin receptor 7 gene (HTR7) and risperidone response in Chinese schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):547-551. doi:10.1016/j.pnpbp.2009.02.008 DOI: https://doi.org/10.1016/j.pnpbp.2009.02.008
Hung WC, Yu TH, Wu CC, Lee TL, Tsai IT, Hsuan CF, Chen CY, Chung FM, Lee YJ, Tang WH. FABP3, FABP4, and heart rate variability among patients with chronic schizophrenia. Front Endocrinol (Lausanne). 2023;14:1165621. doi:10.3389/fendo.2023.1165621 DOI: https://doi.org/10.3389/fendo.2023.1165621
Wang KS, Liu X, Arana TB, Thompson N, Weisman H, Devargas C, Mao C, Su BB, Camarillo C, Escamilla MA, et al. Genetic association analysis of ITGB3 polymorphisms with age at onset of schizophrenia. J Mol Neurosci. 2013;51(2):446-453. doi:10.1007/s12031-013-0059-8 DOI: https://doi.org/10.1007/s12031-013-0059-8
Saito S, Takahashi N, Maeno N, Ito Y, Aleksic B, Usui H, Iidaka T, Inada T, Ozaki N. An association study of tachykinin receptor 3 gene with schizophrenia in the Japanese population. Neuroreport. 2008;19(4):471-473. doi:10.1097/WNR.0b013e3282f600b4 DOI: https://doi.org/10.1097/WNR.0b013e3282f600b4
Chen CY, Liu HY, Hsueh YP. TLR3 downregulates expression of schizophrenia gene Disc1 via MYD88 to control neuronal morphology. EMBO Rep. 2017;18(1):169-183. doi:10.15252/embr.201642586 DOI: https://doi.org/10.15252/embr.201642586
Wang J, Liu Y, Wang Z, Du W, Hui L, Zhao X, Zhao X, Zhang X, Wei J. Lack of genetic association of the TGM2 gene with schizophrenia in a Chinese population. Psychiatr Genet. 2015;25(6):259-262. doi:10.1097/YPG.0000000000000103 DOI: https://doi.org/10.1097/YPG.0000000000000103
Nunokawa A, Watanabe Y, Kaneko N, Sugai T, Yazaki S, Arinami T, Ujike H, Inada T, Iwata N, Kunugi H, et al. The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: case-control studies and an updated meta-analysis. Schizophr Res. 2010;116(1):61-67. doi:10.1016/j.schres.2009.10.016 DOI: https://doi.org/10.1016/j.schres.2009.10.016
Kassan A, Egawa J, Zhang Z, Almenar-Queralt A, Nguyen QM, Lajevardi Y, Kim K, Posadas E, Jeste DV, Roth DM, et al. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J Neurophysiol. 2017;117(1):436-444. doi:10.1152/jn.00481.2016 DOI: https://doi.org/10.1152/jn.00481.2016
Rivero G, Gabilondo AM, García-Sevilla JA, Callado LF, La Harpe R, Morentin B, Meana JJ. Brain RGS4 and RGS10 protein expression in schizophrenia and depression. Effect of drug treatment. Psychopharmacology (Berl). 2013;226(1):177-188. doi:10.1007/s00213-012-2888-5 DOI: https://doi.org/10.1007/s00213-012-2888-5
Khan RA, Chen J, Wang M, Wen Z, Shen J, Song Z, Li Z, Wang Q, Li W, Xu Y, et al. Analysis of association between common variants in the SLCO6A1 gene with schizophrenia, bipolar disorder and major depressive disorder in the Han Chinese population. World J Biol Psychiatry. 2016;17(2):140-146. doi:10.3109/15622975.2015.1126676 DOI: https://doi.org/10.3109/15622975.2015.1126676
Zhu Y, Webster MJ, Walker AK, Massa P, Middleton FA, Weickert CS. Increased prefrontal cortical cells positive for macrophage/microglial marker CD163 along blood vessels characterizes a neuropathology of neuroinflammatory schizophrenia. Brain Behav Immun. 2023;111:46-60. doi:10.1016/j.bbi.2023.03.018 DOI: https://doi.org/10.1016/j.bbi.2023.03.018
Hidalgo S, Campusano JM, Hodge JJL. The Drosophila ortholog of the schizophrenia-associated CACNA1A and CACNA1B voltage-gated calcium channels regulate memory, sleep and circadian rhythms. Neurobiol Dis. 2021;155:105394. doi:10.1016/j.nbd.2021.105394 DOI: https://doi.org/10.1016/j.nbd.2021.105394
Kowalczyk M, Kucia K, Owczarek A, Suchanek-Raif R, Merk W, Paul-Samojedny M, Kowalski J. Association Studies of HSPA1A and HSPA1L Gene Polymorphisms With Schizophrenia. Arch Med Res. 2018;49(5):342-349. doi:10.1016/j.arcmed.2018.10.002 DOI: https://doi.org/10.1016/j.arcmed.2018.10.002
Souza RP, Rosa DV, Romano-Silva MA, Zhen M, Meltzer HY, Lieberman JA, Remington G, Kennedy JL, Wong AH. Lack of association of NALCN genetic variants with schizophrenia. Psychiatry Res. 2011;185(3):450-452. doi:10.1016/j.psychres.2010.07.009 DOI: https://doi.org/10.1016/j.psychres.2010.07.009
Grubor M, Zivkovic M, Sagud M, Nikolac Perkovic M, Mihaljevic-Peles A, Pivac N, Muck-Seler D, Svob Strac D. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 Gene Polymorphisms and Extrapyramidal Side Effects in Haloperidol-Treated Patients with Schizophrenia. Int J Mol Sci. 2020;21(7):2345.doi:10.3390/ijms21072345 DOI: https://doi.org/10.3390/ijms21072345
Boiko AS, Ivanova SA, Pozhidaev IV, Freidin MB, Osmanova DZ, Fedorenko OY, Semke AV, Bokhan NA, Wilffert B, Loonen AJM. Pharmacogenetics of tardive dyskinesia in schizophrenia: The role of CHRM1 and CHRM2 muscarinic receptors. World J Biol Psychiatry. 2020;21(1):72-77. doi:10.1080/15622975.2018.1548780 DOI: https://doi.org/10.1080/15622975.2018.1548780
Bergman O, Westberg L, Nilsson LG, Adolfsson R, Eriksson E. Preliminary evidence that polymorphisms in dopamine-related transcription factors LMX1A, LMX1B and PITX3 are associated with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1094-1097. doi:10.1016/j.pnpbp.2010.05.032 DOI: https://doi.org/10.1016/j.pnpbp.2010.05.032
El Chehadeh S, Han KA, Kim D, Jang G, Bakhtiari S, Lim D, Kim HY, Kim J, Kim H, Wynn J, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13(1):4112. doi:10.1038/s41467-022-31566-z DOI: https://doi.org/10.1038/s41467-022-31566-z
Hattori E, Yamada K, Toyota T, Yoshitsugu K, Toru M, Shibuya H, Yoshikawa T. Association studies of the CT repeat polymorphism in the 5’ upstream region of the cholecystokinin B receptor gene with panic disorder and schizophrenia in Japanese subjects. Am J Med Genet. 2001;105(8):779-782. doi:10.1002/ajmg.10043 DOI: https://doi.org/10.1002/ajmg.10043
Brocos-Mosquera I, Miranda-Azpiazu P, Muguruza C, Corzo-Monje V, Morentin B, Meana JJ, Callado LF, Rivero G. Differential brain ADRA2A and ADRA2C gene expression and epigenetic regulation in schizophrenia. Effect of antipsychotic drug treatment. Transl Psychiatry. 2021;11(1):643. doi:10.1038/s41398-021-01762-4 DOI: https://doi.org/10.1038/s41398-021-01762-4
Kozłowska E, Brzezińska-Błaszczyk E, Agier J, Wysokiński A, Żelechowska P. Alarmins (IL-33, sST2, HMGB1, and S100B) as potential biomarkers for schizophrenia. J Psychiatr Res. 2021;138:380-387. doi:10.1016/j.jpsychires.2021.04.019 DOI: https://doi.org/10.1016/j.jpsychires.2021.04.019
Melkersson K. Case report of a patient with schizophrenia and a mutation in the insulin receptor substrate-4 gene. Neuro Endocrinol Lett. 2013;34(3):173-176.
Kilic G, Ismail Kucukali C, Orhan N, Ozkok E, Zengin A, Aydin M, Kara I. Are GRIK3 (T928G) gene variants in schizophrenia patients different from those in their first-degree relatives?. Psychiatry Res. 2010;175(1-2):43-46. doi:10.1016/j.psychres.2008.10.001 DOI: https://doi.org/10.1016/j.psychres.2008.10.001
Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, Abrahams BS, Coccaro EF, Hodgins S, Turecki G, Condon A, et al. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(6):880-889. doi:10.1002/ajmg.b.30696 DOI: https://doi.org/10.1002/ajmg.b.30696
Shirts BH, Kim JJ, Reich S, Dickerson FB, Yolken RH, Devlin B, Nimgaonkar VL. Polymorphisms in MICB are associated with human herpes virus seropositivity and schizophrenia risk. Schizophr Res. 2007;94(1-3):342-353. doi:10.1016/j.schres.2007.04.021 DOI: https://doi.org/10.1016/j.schres.2007.04.021
Li J, Zhu L, Guan F, Yan Z, Liu D, Han W, Chen T. Relationship between schizophrenia and changes in the expression of the long non-coding RNAs Meg3, Miat, Neat1 and Neat2. J Psychiatr Res. 2018;106:22-30. doi:10.1016/j.jpsychires.2018.09.005 DOI: https://doi.org/10.1016/j.jpsychires.2018.09.005
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr. 2023;79:103400. doi:10.1016/j.ajp.2022.103400 DOI: https://doi.org/10.1016/j.ajp.2022.103400
Underwood SL, Christoforou A, Thomson PA, Wray NR, Tenesa A, Whittaker J, Adams RA, Le Hellard S, Morris SW, Blackwood DH, et al. Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia. Mol Psychiatry. 2006;11(4):384-394. doi:10.1038/sj.mp.4001786 DOI: https://doi.org/10.1038/sj.mp.4001786
Huang J, Xiao J, Peng Z, Shao P, Sun M, Long Y, Wang X, Shen M, Kang D, Yang Y, et al. PCSK9 mediates dyslipidemia induced by olanzapine treatment in schizophrenia patients. Psychopharmacology (Berl). 2022;239(1):83-91. doi:10.1007/s00213-021-06042-z DOI: https://doi.org/10.1007/s00213-021-06042-z
Roberts E. GABAergic malfunction in the limbic system resulting from an aboriginal genetic defect in voltage-gated Na+-channel SCN5A is proposed to give rise to susceptibility to schizophrenia. Adv Pharmacol. 2006;54:119-145. doi:10.1016/s1054-3589(06)54006-2 DOI: https://doi.org/10.1016/S1054-3589(06)54006-2
Eastwood SL, Harrison PJ. Decreased mRNA expression of netrin-G1 and netrin-G2 in the temporal lobe in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;33(4):933-945. doi:10.1038/sj.npp.1301457 DOI: https://doi.org/10.1038/sj.npp.1301457
Otsuka I, Watanabe Y, Hishimoto A, Boku S, Mouri K, Shiroiwa K, Okazaki S, Nunokawa A, Shirakawa O, Someya T, et al. Association analysis of the Cadherin13 gene with schizophrenia in the Japanese population. Neuropsychiatr Dis Treat. 2015;11:1381-1393. doi:10.2147/NDT.S84736 DOI: https://doi.org/10.2147/NDT.S84736
Thomas RA, Ambalavanan A, Rouleau GA, Barker PA. Identification of genetic variants of LGI1 and RTN4R (NgR1) linked to schizophrenia that are defective in NgR1-LGI1 signaling. Mol Genet Genomic Med. 2016;4(4):447-456. doi:10.1002/mgg3.215 DOI: https://doi.org/10.1002/mgg3.215
Zhang B, Guan F, Chen G, Lin H, Zhang T, Feng J, Li L, Fu D. Common variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr Res. 2015;169(1-3):128-134. doi:10.1016/j.schres.2015.10.012 DOI: https://doi.org/10.1016/j.schres.2015.10.012
Nakashima M, Imada H, Shiraishi E, Ito Y, Suzuki N, Miyamoto M, Taniguchi T, Iwashita H. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia. J Pharmacol Exp Ther. 2018;365(1):179-188. doi:10.1124/jpet.117.245506 DOI: https://doi.org/10.1124/jpet.117.245506
Wang X, Su Y, Yan H, Huang Z, Huang Y, Yue W. Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia. Front Psychiatry. 2019;10:633. doi:10.3389/fpsyt.2019.00633 DOI: https://doi.org/10.3389/fpsyt.2019.00633
Luykx JJ, Broersen JL, de Leeuw M. The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;74(Pt A):214-224. doi:10.1016/j.neubiorev.2017.01.006 DOI: https://doi.org/10.1016/j.neubiorev.2017.01.006
Arcadepani FB, Gadelha A, Margolis RL. Mutation of GPR143 Associated With Ocular Albinism Type 1, Intellectual Disability, and Schizophrenia: The Complex Biological and Social Interactions Between Genetic Syndromes and Mental Illness. J Psychiatr Pract. 2023;29(1):77-81. doi:10.1097/PRA.0000000000000685 DOI: https://doi.org/10.1097/PRA.0000000000000685
De Rosa A, Di Maio A, Torretta S, Garofalo M, Giorgelli V, Masellis R, Nuzzo T, Errico F, Bertolino A, Subramaniam S, et al. Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules. 2022;12(2):328. doi:10.3390/biom12020328 DOI: https://doi.org/10.3390/biom12020328
Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, Caterson B, Berretta S. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5(1):e496. doi:10.1038/tp.2014.128 DOI: https://doi.org/10.1038/tp.2014.128
Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. Front Cell Neurosci. 2020;14:221. doi:10.3389/fncel.2020.00221 DOI: https://doi.org/10.3389/fncel.2020.00221
Ke ZJ, Calingasan NY, DeGiorgio LA, Volpe BT, Gibson GE. CD40-CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Neurochem Int. 2005;47(3):204-215. doi:10.1016/j.neuint.2005.03.002 DOI: https://doi.org/10.1016/j.neuint.2005.03.002
Bose S, Cho J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res. 2013;36(9):1039-1050. doi:10.1007/s12272-013-0161-z DOI: https://doi.org/10.1007/s12272-013-0161-z
Aghaizu ND, Jolly S, Samra SK, Kalmar B, Craessaerts K, Greensmith L, Salinas PC, De Strooper B, Whiting PJ. Microglial Expression of the Wnt Signaling Modulator DKK2 Differs between Human Alzheimer’s Disease Brains and Mouse Neurodegeneration Models. eNeuro. 2023;10(1):ENEURO.0306-22.2022. doi:10.1523/ENEURO.0306-22.2022 DOI: https://doi.org/10.1523/ENEURO.0306-22.2022
Santiago TC, Parra L, Nani JV, Fidalgo TM, Bradshaw NJ, Hayashi MAF. Angiotensin-converting enzymes as druggable features of psychiatric and neurodegenerative disorders. J Neurochem. 2023;166(2):138-155. doi:10.1111/jnc.15806 DOI: https://doi.org/10.1111/jnc.15806
Kaushal V, Koeberle PD, Wang Y, Schlichter LC. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci. 2007;27(1):234-244. doi:10.1523/JNEUROSCI.3593-06.2007 DOI: https://doi.org/10.1523/JNEUROSCI.3593-06.2007
Benvegnù S, Franciotta D, Sussman J, Bachi A, Zardini E, Torreri P, Govaerts C, Pizzo S, Legname G. Prion protein paralog doppel protein interacts with alpha-2-macroglobulin: a plausible mechanism for doppel-mediated neurodegeneration. PLoS One. 2009;4(6):e5968. doi:10.1371/journal.pone.0005968 DOI: https://doi.org/10.1371/journal.pone.0005968
Mori H, Funahashi Y, Yoshino Y, Kumon H, Ozaki Y, Yamazaki K, Ochi S, Tachibana A, Yoshida T, Shimizu H, et al. Blood CDKN2A Gene Expression in Aging and Neurodegenerative Diseases. J Alzheimers Dis. 2021;82(4):1737-1744. doi:10.3233/JAD-210483 DOI: https://doi.org/10.3233/JAD-210483
Xiang W, Chao ZY, Feng DY. Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases. Rev Neurosci. 2015;26(4):407-414. doi:10.1515/revneuro-2014-0067 DOI: https://doi.org/10.1515/revneuro-2014-0067
Shmuel-Galia L, Klug Y, Porat Z, Charni M, Zarmi B, Shai Y. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J Biol Chem. 2017;292(32):13415-13427. doi:10.1074/jbc.M117.784983 DOI: https://doi.org/10.1074/jbc.M117.784983
Chua XY, Chong JR, Cheng AL, Lee JH, Ballard C, Aarsland D, Francis PT, Lai MKP. Elevation of inactive cleaved annexin A1 in the neocortex is associated with amyloid, inflammatory and apoptotic markers in neurodegenerative dementias. Neurochem Int. 2022;152:105251. doi:10.1016/j.neuint.2021.105251 DOI: https://doi.org/10.1016/j.neuint.2021.105251
Gholamzadeh Khoei S, Fayazi N, Najafi R. Sphingosine kinase 1 could enhance stem cell therapy efficiency for neurodegenerative diseases through induction of HIF-1. Int J Neurosci. 2021;131(1):102-104. doi:10.1080/00207454.2020.1732966 DOI: https://doi.org/10.1080/00207454.2020.1732966
Luo X, Rosenfeld JA, Yamamoto S, Harel T, Zuo Z, Hall M, Wierenga KJ, Pastore MT, Bartholomew D, Delgado MR, et al. Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genet. 2017;13(7):e1006905. doi:10.1371/journal.pgen.1006905 DOI: https://doi.org/10.1371/journal.pgen.1006905
Barbier M, Camuzat A, Hachimi KE, Guegan J, Rinaldi D, Lattante S, Houot M, Sánchez-Valle R, Sabatelli M, Antonell A, et al. SLITRK2, an X-linked modifier of the age at onset in C9orf72 frontotemporal lobar degeneration. Brain. 2021;144(9):2798-2811. doi:10.1093/brain/awab171 DOI: https://doi.org/10.1093/brain/awab171
Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A. Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol. 2013;8(3):643-650. doi:10.1007/s11481-013-9439-7 DOI: https://doi.org/10.1007/s11481-013-9439-7
Padovani D, Hessani A, Castillo FT, Liot G, Andriamihaja M, Lan A, Pilati C, Blachier F, Sen S, Galardon E, et al. Sulfheme formation during homocysteine S-oxygenation by catalase in cancers and neurodegenerative diseases. Nat Commun. 2016;7:13386. doi:10.1038/ncomms13386 DOI: https://doi.org/10.1038/ncomms13386
Gorbatyuk MS, Gorbatyuk OS. The Molecular Chaperone GRP78/BiP as a Therapeutic Target for Neurodegenerative Disorders: A Mini Review. J Genet Syndr Gene Ther. 2013;4(2):128. doi:10.4172/2157-7412.1000128 DOI: https://doi.org/10.4172/2157-7412.1000128
Fasoli S, Bettin I, Montioli R, Fagagnini A, Peterle D, Laurents DV, Gotte G. Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci. 2021;22(18):10068. doi:10.3390/ijms221810068 DOI: https://doi.org/10.3390/ijms221810068
Xue XH, Tao LL, Su DQ, Guo CJ, Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis. Brain Behav. 2022;12(2):e2502. doi:10.1002/brb3.2502 DOI: https://doi.org/10.1002/brb3.2502
Barati S, Fabrizio C, Strafella C, Cascella R, Caputo V, Megalizzi D, Peconi C, Mela J, Colantoni L, Caltagirone C, et al. Relationship between Nutrition, Lifestyle, and Neurodegenerative Disease: Lessons from ADH1B, CYP1A2 and MTHFR. Genes (Basel). 2022;13(8):1498. doi:10.3390/genes13081498 DOI: https://doi.org/10.3390/genes13081498
Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Varela N, Delgado M. Vasoactive intestinal peptide family as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets. 2005;9(5):923-929. doi:10.1517/14728222.9.5.923 DOI: https://doi.org/10.1517/14728222.9.5.923
Buchanan DD, Silburn PA, Chalk JB, Le Couteur DG, Mellick GD. The Cys282Tyr polymorphism in the HFE gene in Australian Parkinson’s disease patients. Neurosci Lett. 2002;327(2):91-94. doi:10.1016/s0304-3940(02)00398-1 DOI: https://doi.org/10.1016/S0304-3940(02)00398-1
Shen R, Lin S, He L, Zhu X, Zhou Z, Chen S, Wang Y, Ding J. Association of Two Polymorphisms in CCL2 With Parkinson’s Disease: A Case-Control Study. Front Neurol. 2019;10:35. doi:10.3389/fneur.2019.00035 DOI: https://doi.org/10.3389/fneur.2019.00035
Jamshidi J, Movafagh A, Emamalizadeh B, Zare Bidoki A, Manafi A, Ghasemi Firouzabadi S, Shahidi GA, Kazeminasab S, Petramfar P, Fazeli A, et al. HLA-DRA is associated with Parkinson’s disease in Iranian population. Int J Immunogenet. 2014;41(6):508-511. doi:10.1111/iji.12151 DOI: https://doi.org/10.1111/iji.12151
Zou J, Chen Z, Liang C, Fu Y, Wei X, Lu J, Pan M, Guo Y, Liao X, Xie H, et al. Trefoil Factor 3, Cholinesterase and Homocysteine: Potential Predictors for Parkinson’s Disease Dementia and Vascular Parkinsonism Dementia in Advanced Stage. Aging Dis. 2018;9(1):51-65. doi:10.14336/AD.2017.0416 DOI: https://doi.org/10.14336/AD.2017.0416
Huang H, Peng C, Liu Y, Liu X, Chen Q, Huang Z. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson’s disease: A meta-analysis. Medicine (Baltimore). 2016;95(40):e4982. doi:10.1097/MD.0000000000004982 DOI: https://doi.org/10.1097/MD.0000000000004982
Woodward Z, Prickett TCR, Espiner EA, Anderson TJ. Central and systemic C-type Natriuretic Peptide are both reduced in Parkinson’s Disease. Parkinsonism Relat Disord. 2017;43:15-19. doi:10.1016/j.parkreldis.2017.06.019 DOI: https://doi.org/10.1016/j.parkreldis.2017.06.019
Konings CH, Kuiper MA, Bergmans PL, Grijpma AM, van Kamp GJ, Wolters EC. Increased angiotensin-converting enzyme activity in cerebrospinal fluid of treated patients with Parkinson’s disease. Clin Chim Acta. 1994;231(1):101-106. doi:10.1016/0009-8981(94)90259-3 DOI: https://doi.org/10.1016/0009-8981(94)90259-3
Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson’s Disease. Int J Neuropsychopharmacol. 2020;23(11):762-773. doi:10.1093/ijnp/pyaa060 DOI: https://doi.org/10.1093/ijnp/pyaa060
Dursun E, Gezen-Ak D, Hanağası H, Bilgiç B, Lohmann E, Ertan S, Atasoy İL, Alaylıoğlu M, Araz ÖS, Önal B, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol. 2015;283:50-57. doi:10.1016/j.jneuroim.2015.04.014 DOI: https://doi.org/10.1016/j.jneuroim.2015.04.014
Schulte EC, Stahl I, Czamara D, Ellwanger DC, Eck S, Graf E, Mollenhauer B, Zimprich A, Lichtner P, Haubenberger D, et al. Rare variants in PLXNA4 and Parkinson’s disease. PLoS One. 2013;8(11):e79145. doi:10.1371/journal.pone.0079145 DOI: https://doi.org/10.1371/journal.pone.0079145
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C. CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res. 2022;177:106133. doi:10.1016/j.phrs.2022.106133 DOI: https://doi.org/10.1016/j.phrs.2022.106133
Zhi Y, Yuan Y, Si Q, Wang M, Shen Y, Wang L, Zhang H, Zhang K.The Association between DRD3 Ser9Gly Polymorphism and Depression Severity in Parkinson’s Disease. Parkinsons Dis. 2019;2019:1642087. doi:10.1155/2019/1642087 DOI: https://doi.org/10.1155/2019/1642087
Chen G, Ahn EH, Kang SS, Xia Y, Liu X, Zhang Z, Ye K. UNC5C Receptor Proteolytic Cleavage by Active AEP Promotes Dopaminergic Neuronal Degeneration in Parkinson’s Disease. Adv Sci (Weinh). 2022;9(7):e2103396. doi:10.1002/advs.202103396 DOI: https://doi.org/10.1002/advs.202103396
Singh G, Pushpa TK, Gupta SK, Srivastava S, Khatri DK, Singh SB. Perspective on Cav-1 for its Potential as Newer Therapeutics for Parkinson’s Disease. CNS Neurol Disord Drug Targets. 2023;22(10):1429-1438. doi:10.2174/1871527321666220909150406 DOI: https://doi.org/10.2174/1871527321666220909150406
Motyl J, Przykaza Ł, Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology. 2018;135:139-150. doi:10.1016/j.neuropharm.2018.02.023 DOI: https://doi.org/10.1016/j.neuropharm.2018.02.023
Nissen SK, Ferreira SA, Nielsen MC, Schulte C, Shrivastava K, Hennig D, Etzerodt A, Graversen JH, Berg D, Maetzler W, et al. Soluble CD163 Changes Indicate Monocyte Association With Cognitive Deficits in Parkinson’s Disease. Mov Disord. 2021;36(4):963-976. doi:10.1002/mds.28424 DOI: https://doi.org/10.1002/mds.28424
Ferrari E, Scheggia D, Zianni E, Italia M, Brumana M, Palazzolo L, Parravicini C, Pilotto A, Padovani A, Marcello E, et al. Rabphilin-3A as a novel target to reverse α-synuclein-induced synaptic loss in Parkinson’s disease. Pharmacol Res. 2022;183:106375. doi:10.1016/j.phrs.2022.106375 DOI: https://doi.org/10.1016/j.phrs.2022.106375
Salehi Z, Rajaei F. Expression of hepatocyte growth factor in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci. 2010;17(12):1553-1556. doi:10.1016/j.jocn.2010.04.034 DOI: https://doi.org/10.1016/j.jocn.2010.04.034
Wang J, Si YM, Liu ZL, Yu L. Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics. 2003;13(6):365-369. doi:10.1097/00008571-200306000-00008 DOI: https://doi.org/10.1097/00008571-200306000-00008
Güler S, Gül T, Güler Ş, Haerle MC, Başak AN. Early-Onset Parkinson’s Disease: A Novel Deletion Comprising the DJ-1 and TNFRSF9 Genes. Mov Disord. 2021;36(12):2973-2976. doi:10.1002/mds.28812 DOI: https://doi.org/10.1002/mds.28812
Quan Y, Wang J, Wang S, Zhao J. Association of the Plasma Long Non-coding RNA MEG3 With Parkinson’s Disease. Front Neurol. 2020;11:532891.doi:10.3389/fneur.2020.532891 DOI: https://doi.org/10.3389/fneur.2020.532891
Baek JH, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P. GRP78 Level Is Altered in the Brain, but Not in Plasma or Cerebrospinal Fluid in Parkinson’s Disease Patients. Front Neurosci. 2019;13:697. doi:10.3389/fnins.2019.00697 DOI: https://doi.org/10.3389/fnins.2019.00697
Deng S, Deng H, Le W, Xu H, Yang H, Deng X, Lv H, Xie W, Zhu S, Jankovic J. Genetic analysis of the NEUROG2 gene in patients with Parkinson’s disease. Neurosci Lett. 2010;468(3):195-197. doi:10.1016/j.neulet.2009.10.078 DOI: https://doi.org/10.1016/j.neulet.2009.10.078
Prehn JHM, Jirström E. Angiogenin and tRNA fragments in Parkinson’s disease and neurodegeneration. Acta Pharmacol Sin. 2020;41(4):442-446. doi:10.1038/s41401-020-0375-9 DOI: https://doi.org/10.1038/s41401-020-0375-9
Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, Wurster I, Rattay TW, Roncoroni L, Schaeffer E, et al. GDF15/MIC1 and MMP9 Cerebrospinal Fluid Levels in Parkinson’s Disease and Lewy Body Dementia. PLoS One. 2016;11(3):e0149349. doi:10.1371/journal.pone.0149349 DOI: https://doi.org/10.1371/journal.pone.0149349
Ahn EH, Kang SS, Qi Q, Liu X, Ye K. Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson’s disease. Proc Natl Acad Sci U S A. 2020;117(39):24503-24513. doi:10.1073/pnas.2004087117 DOI: https://doi.org/10.1073/pnas.2004087117
Cheng Y, Mao CY, Liu YT, Li F, Yang J, Liu H, Zhang C, Wang YL, Wu J, Shi CH, et al. Analysis of variant rs3794087 in SLC1A2 and Parkinson’s disease in a Chinese Han population: A case-control study and meta-analysis. Neurosci Lett. 2018;666:165-168. doi:10.1016/j.neulet.2017.12.045 DOI: https://doi.org/10.1016/j.neulet.2017.12.045
McGuire V, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, et al. Association of DRD2 and DRD3 polymorphisms with Parkinson’s disease in a multiethnic consortium. J Neurol Sci. 2011;307(1-2):22-29. doi:10.1016/j.jns.2011.05.031 DOI: https://doi.org/10.1016/j.jns.2011.05.031
Goshima Y, Masukawa D, Kasahara Y, Hashimoto T, Aladeokin AC. l-DOPA and Its Receptor GPR143: Implications for Pathogenesis and Therapy in Parkinson’s Disease. Front Pharmacol. 2019;10:1119. doi:10.3389/fphar.2019.01119 DOI: https://doi.org/10.3389/fphar.2019.01119
Eshraghi M, Ramírez-Jarquín UN, Shahani N, Nuzzo T, De Rosa A, Swarnkar S, Galli N, Rivera O, Tsaprailis G, Scharager-Tapia C, et al. RasGRP1 is a causal factor in the development of l-DOPA-induced dyskinesia in Parkinson’s disease. Sci Adv. 2020;6(18):eaaz7001. doi:10.1126/sciadv.aaz7001 DOI: https://doi.org/10.1126/sciadv.aaz7001
Siokas V, Aloizou AM, Liampas I, Bakirtzis C, Tsouris Z, Sgantzos M, Liakos P, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E. Myelin-associated oligodendrocyte basic protein rs616147 polymorphism as a risk factor for Parkinson’s disease. Acta Neurol Scand. 2022;145(2):223-228. doi:10.1111/ane.13538 DOI: https://doi.org/10.1111/ane.13538
Korkmaz OT, Ay H, Aytan N, Carreras I, Kowall NW, Dedeoglu A, Tuncel N. Vasoactive Intestinal Peptide Decreases β-Amyloid Accumulation and Prevents Brain Atrophy in the 5xFAD Mouse Model of Alzheimer’s Disease. J Mol Neurosci. 2019;68(3):389-396. doi:10.1007/s12031-018-1226-8 DOI: https://doi.org/10.1007/s12031-018-1226-8
Giunta B, Rezai-Zadeh K, Tan J. Impact of the CD40-CD40L dyad in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9(2):149-155. doi:10.2174/187152710791012099 DOI: https://doi.org/10.2174/187152710791012099
Lovell MA, Xie C, Xiong S, Markesbery WR. Wilms’ tumor suppressor (WT1) is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer’s disease. Brain Res. 2003;983(1-2):84-96. doi:10.1016/s0006-8993(03)03032-4 DOI: https://doi.org/10.1016/S0006-8993(03)03032-4
Connor JR, Lee SY. HFE mutations and Alzheimer’s disease. J Alzheimers Dis. 2006;10(2-3):267-276. doi:10.3233/jad-2006-102-311. DOI: https://doi.org/10.3233/JAD-2006-102-311
Zhu M, Tang M, Du Y. Identification of TAC1 Associated with Alzheimer’s Disease Using a Robust Rank Aggregation Approach. J Alzheimers Dis. 2023;91(4):1339-1349. doi:10.3233/JAD-220950 DOI: https://doi.org/10.3233/JAD-220950
Municio C, Carro E. Aquaporin 5 in Alzheimer’s disease: a link between oral and brain pathology?. Neural Regen Res. 2023;18(7):1491-1492. doi:10.4103/1673-5374.361545 DOI: https://doi.org/10.4103/1673-5374.361545
Xu LZ, Li BQ, Li FY, Quan MN, Qin W, Li Y, Li WW, Zhao Y, Wei YP, Jia JP. Upregulation of Wnt2b exerts neuroprotective effect by alleviating mitochondrial dysfunction in Alzheimer’s disease. CNS Neurosci Ther. 2023;29(7):1805-1816. doi:10.1111/cns.14139 DOI: https://doi.org/10.1111/cns.14139
Dai D, Xie J, Zheng Y, Chen F, Zhao B, Miao L. H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer’s disease. Cytotechnology. 2023;75(5):449-460. doi:10.1007/s10616-023-00589-9 DOI: https://doi.org/10.1007/s10616-023-00589-9
Chen M, Li L, Liu C, Song L. Berberine attenuates Aβ-induced neuronal damage through regulating miR-188/NOS1 in Alzheimer’s disease. Mol Cell Biochem. 2020;474(1-2):285-294. doi:10.1007/s11010-020-03852-1 DOI: https://doi.org/10.1007/s11010-020-03852-1
Harold D, Jehu L, Turic D, Hollingworth P, Moore P, Summerhayes P, Moskvina V, Foy C, Archer N, Hamilton BA, et al. Interaction between the ADAM12 and SH3MD1 genes may confer susceptibility to late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):448-452. doi:10.1002/ajmg.b.30456 DOI: https://doi.org/10.1002/ajmg.b.30456
Fehér Á, Juhász A, László A, Pákáski M, Kálmán J, Janka Z. Association between the ABCG2 C421A polymorphism and Alzheimer’s disease. Neurosci Lett. 2013;550:51-54. doi:10.1016/j.neulet.2013.06.044 DOI: https://doi.org/10.1016/j.neulet.2013.06.044
Lin KP, Chen SY, Lai LC, Huang YL, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, et al. Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer’s disease. PLoS One. 2011;6(6):e20573. doi:10.1371/journal.pone.0020573 DOI: https://doi.org/10.1371/journal.pone.0020573
Zubenko GS, Volicer L, Direnfeld LK, Freeman M, Langlais PJ, Nixon RA. Cerebrospinal fluid levels of angiotensin-converting enzyme in Alzheimer’s disease, Parkinson’s disease and progressive supranuclear palsy. Brain Res. 1985;328(2):215-221. doi:10.1016/0006-8993(85)91032-7 DOI: https://doi.org/10.1016/0006-8993(85)91032-7
Zhou Z, Chen F, Zhong S, Zhou Y, Zhang R, Kang K, Zhang X, Xu Y, Zhao M, Zhao C. Molecular identification of protein kinase C beta in Alzheimer’s disease. Aging (Albany NY). 2020;12(21):21798-21808. doi:10.18632/aging.103994 DOI: https://doi.org/10.18632/aging.103994
Wang Y, Sun H, Yang J, Shi C, Liu Y, Xu Y, Zhang J. Generation of induced pluripotent stem cell line (ZZUi0013-A) from a 65-year-old patient with a novel MEOX2 gene mutation in Alzheimer’s disease. Stem Cell Res. 2019;34:101366. doi:10.1016/j.scr.2018.101366 DOI: https://doi.org/10.1016/j.scr.2018.101366
Tedde A, Piaceri I, Bagnoli S, Lucenteforte E, Ueberham U, Arendt T, Sorbi S, Association Study of Genetic Variants in CDKN2A/CDKN2B Genes/Loci with Late-Onset Alzheimer’s Disease. Int J Alzheimers Dis. 2011;2011:374631. doi:10.4061/2011/374631acmias B. DOI: https://doi.org/10.4061/2011/374631
Han Q, Sun YA, Zong Y, Chen C, Wang HF, Tan L. Common Variants in PLXNA4 and Correlation to CSF-related Phenotypes in Alzheimer’s Disease. Front Neurosci. 2018;12:946. doi:10.3389/fnins.2018.00946 DOI: https://doi.org/10.3389/fnins.2018.00946
Kobayashi N, Shinagawa S, Nagata T, Shimada K, Shibata N, Ohnuma T, Kasanuki K, Arai H, Yamada H, Nakayama K, et al. Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. PLoS One. 2016;11(12):e0168816. doi:10.1371/journal.pone.0168816 DOI: https://doi.org/10.1371/journal.pone.0168816
Fang Y, Zhang L, Zeng Z, Lian Y, Jia Y, Zhu H, Xu Y. Promoter polymorphisms of SERPINE1 are associated with the antidepressant response to depression in Alzheimer’s disease. Neurosci Lett. 2012;516(2):217-220. doi:10.1016/j.neulet.2012.03.090 DOI: https://doi.org/10.1016/j.neulet.2012.03.090
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer’s Disease. Cell Transplant. 2017;26(4):693-702. doi:10.3727/096368916X694184 DOI: https://doi.org/10.3727/096368916X694184
Uberti D, Cenini G, Bonini SA, Barcikowska M, Styczynska M, Szybinska A, Memo M. Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients. Neurodegener Dis. 2010;7(1-3):143-147. doi:10.1159/000289225 DOI: https://doi.org/10.1159/000289225
Thawkar BS, Kaur G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol. 2019;326:62-74. doi:10.1016/j.jneuroim.2018.11.010 DOI: https://doi.org/10.1016/j.jneuroim.2018.11.010
Guo MF, Zhang HY, Li YH, Gu QF, Wei WY, Wang YY, Zhang XJ, Liu XQ, Song LJ, Chai Z, et al. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer’s disease mice via the downregulation of TLR4/Myd88/NF-κB pathway. J Neuroimmunol. 2020;346:577284. doi:10.1016/j.jneuroim.2020.577284 DOI: https://doi.org/10.1016/j.jneuroim.2020.577284
Craig D, Hart DJ, Carson R, McIlroy SP, Passmore AP. Psychotic symptoms in Alzheimer’s disease are not influenced by polymorphic variation at the dopamine receptor DRD3 gene. Neurosci Lett. 2004;368(1):33-36. doi:10.1016/j.neulet.2004.06.052 DOI: https://doi.org/10.1016/j.neulet.2004.06.052
Chen G, Kang SS, Wang Z, Ahn EH, Xia Y, Liu X, Sandoval IM, Manfredsson FP, Zhang Z, Ye K. Netrin-1 receptor UNC5C cleavage by active δ-secretase enhances neurodegeneration, promoting Alzheimer’s disease pathologies. Sci Adv. 2021;7(16):eabe4499. doi:10.1126/sciadv.abe4499 DOI: https://doi.org/10.1126/sciadv.abe4499
Wilhelmus MM, Bol JG, van Duinen SG, Drukarch B. Extracellular matrix modulator lysyl oxidase colocalizes with amyloid-beta pathology in Alzheimer’s disease and hereditary cerebral hemorrhage with amyloidosis--Dutch type. Exp Gerontol. 2013;48(2):109-114. doi:10.1016/j.exger.2012.12.007 DOI: https://doi.org/10.1016/j.exger.2012.12.007
Jin Y, Tu Q, Liu M. MicroRNA‑125b regulates Alzheimer’s disease through SphK1 regulation. Mol Med Rep. 2018;18(2):2373-2380. doi:10.3892/mmr.2018.9156 DOI: https://doi.org/10.3892/mmr.2018.9156
Tan MG, Lee C, Lee JH, Francis PT, Williams RJ, Ramírez MJ, Chen CP, Wong PT, Lai MK. Decreased rabphilin 3A immunoreactivity in Alzheimer’s disease is associated with Aβ burden. Neurochem Int. 2014;64:29-36. doi:10.1016/j.neuint.2013.10.013 DOI: https://doi.org/10.1016/j.neuint.2013.10.013
Li X, Zhang DF, Bi R, Tan LW, Chen X, Xu M, Yao YG. Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1):17. doi:10.1186/s13195-022-01159-5 DOI: https://doi.org/10.1186/s13195-022-01159-5
Beck TN, Nicolas E, Kopp MC, Golemis EA. Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer’s disease. Oncoscience. 2014;1(7):486-503. doi:10.18632/oncoscience.64 DOI: https://doi.org/10.18632/oncoscience.64
Xu H, Liu Y. ROS-responsive nanomodulators downregulate IFITM3 expression and eliminate ROS for Alzheimer’s disease combination treatment. J Colloid Interface Sci. 2023;645:210-218. doi:10.1016/j.jcis.2023.04.139 DOI: https://doi.org/10.1016/j.jcis.2023.04.139
Forsell C, Björk BF, Lilius L, Axelman K, Fabre SF, Fratiglioni L, Winblad B, Graff C. Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer’s disease. Neurobiol Aging. 2010;31(3):409-415. doi:10.1016/j.neurobiolaging.2008.04.009 DOI: https://doi.org/10.1016/j.neurobiolaging.2008.04.009
Seddighi S, Varma VR, An Y, Varma S, Beason-Held LL, Tanaka T, Kitner-Triolo MH, Kraut MA, Davatzikos C, Thambisetty M. et al. SPARCL1 Accelerates Symptom Onset in Alzheimer’s Disease and Influences Brain Structure and Function During Aging. J Alzheimers Dis. 2018;61(1):401-414. doi:10.3233/JAD-170557 DOI: https://doi.org/10.3233/JAD-170557
Wang J, Ma SF, Yun Q, Liu WJ, Zhai HR, Shi HZ, Xie LG, Qian JJ, Zhao CJ, Zhang WN. FOXG1 as a Potential Therapeutic Target for Alzheimer’s Disease with a Particular Focus on Cell Cycle Regulation. J Alzheimers Dis. 2022;86(3):1255-1273. doi:10.3233/JAD-215144 DOI: https://doi.org/10.3233/JAD-215144
Sanfilippo C, Giuliano L, Castrogiovanni P, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer’s Disease-related Sleep Disturbances. Curr Neuropharmacol. 2023;21(3):740-760. doi:10.2174/1570159X21666221207091209 DOI: https://doi.org/10.2174/1570159X21666221207091209
Panitch R, Hu J, Chung J, Zhu C, Meng G, Xia W, Bennett DA, Lunetta KL, Ikezu T, Au R, et al. Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease. Mol Psychiatry. 2021;26(10):6054-6064. doi:10.1038/s41380-021-01266-z DOI: https://doi.org/10.1038/s41380-021-01266-z
Tsuboi Y, Kakimoto K, Nakajima M, Akatsu H, Yamamoto T, Ogawa K, Ohnishi T, Daikuhara Y, Yamada T. Increased hepatocyte growth factor level in cerebrospinal fluid in Alzheimer’s disease. Acta Neurol Scand. 2003;107(2):81-86. doi:10.1034/j.1600-0404.2003.02089.x DOI: https://doi.org/10.1034/j.1600-0404.2003.02089.x
Khodadadi H, Salles ÉL, Jarrahi A, Costigliola V, Khan MB, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, et al. Cannabidiol Ameliorates Cognitive Function via Regulation of IL-33 and TREM2 Upregulation in a Murine Model of Alzheimer’s Disease. J Alzheimers Dis. 2021;80(3):973-977. doi:10.3233/JAD-210026 DOI: https://doi.org/10.3233/JAD-210026
Balusu S, Horré K, Thrupp N, Craessaerts K, Snellinx A, Serneels L, T’Syen D, Chrysidou I, Arranz AM, Sierksma A, et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science. 2023;381(6663):1176-1182. doi:10.1126/science.abp9556 DOI: https://doi.org/10.1126/science.abp9556
Macyczko JR, Wang N, Zhao J, Ren Y, Lu W, Ikezu TC, Zhao N, Liu CC, Bu G, Li Y. Suppression of Wnt/β-Catenin Signaling Is Associated with Downregulation of Wnt1, PORCN, and Rspo2 in Alzheimer’s Disease. Mol Neurobiol. 2023;60(1):26-35. doi:10.1007/s12035-022-03065-1 DOI: https://doi.org/10.1007/s12035-022-03065-1
Courtemanche H, Bigot E, Pichelin M, Guyomarch B, Boutoleau-Bretonnière C, Le May C, Derkinderen P, Cariou B. PCSK9 Concentrations in Cerebrospinal Fluid Are Not Specifically Increased in Alzheimer’s Disease. J Alzheimers Dis. 2018;62(4):1519-1525. doi:10.3233/JAD-170993 DOI: https://doi.org/10.3233/JAD-170993
Zimetti F, Caffarra P, Ronda N, Favari E, Adorni MP, Zanotti I, Bernini F, Barocco F, Spallazzi M, Galimberti D, et al. Increased PCSK9 Cerebrospinal Fluid Concentrations in Alzheimer’s Disease. J Alzheimers Dis. 2017;55(1):315-320. doi:10.3233/JAD-160411 DOI: https://doi.org/10.3233/JAD-160411
Lehrer S, Rheinstein PH. RORB, an Alzheimer’s disease susceptibility gene, is associated with viral encephalitis, an Alzheimer’s disease risk factor. Clin Neurol Neurosurg. 2023;233:107984. doi:10.1016/j.clineuro.2023.107984 DOI: https://doi.org/10.1016/j.clineuro.2023.107984
Sillén A, Brohede J, Lilius L, Forsell C, Andrade J, Odeberg J, Ebise H, Winblad B, Graff C. Linkage to 20p13 including the ANGPT4 gene in families with mixed Alzheimer’s disease and vascular dementia. J Hum Genet. 2010;55(10):649-655. doi:10.1038/jhg.2010.79 DOI: https://doi.org/10.1038/jhg.2010.79
Liu FF, Zhang Z, Chen W, Gu HY, Yan QJ. Regulatory mechanism of microRNA-377 on CDH13 expression in the cell model of Alzheimer’s disease. Eur Rev Med Pharmacol Sci. 2018;22(9):2801-2808. doi:10.26355/eurrev_201805_14979
Hu D, Dong X, Wang Q, Liu M, Luo S, Meng Z, Feng Z, Zhou W, Song W. PCP4 Promotes Alzheimer’s Disease Pathogenesis by Affecting Amyloid-β Protein Precursor Processing. J Alzheimers Dis. 2023;94(2):737-750. doi:10.3233/JAD-230192 DOI: https://doi.org/10.3233/JAD-230192
Gagliardi S, Davin A, Bini P, Sinforiani E, Poloni TE, Polito L, Rivoiro C, Binetti G, Paterlini A, Benussi L, et al. A Novel Nonsense Angiogenin Mutation is Associated With Alzheimer Disease. Alzheimer Dis Assoc Disord. 2019;33(2):163-165. doi:10.1097/WAD.0000000000000272 DOI: https://doi.org/10.1097/WAD.0000000000000272
Chiariello A, Valente S, Pasquinelli G, Baracca A, Sgarbi G, Solaini G, Medici V, Fantini V, Poloni TE, Tognocchi M, et al. The expression pattern of GDF15 in human brain changes during aging and in Alzheimer’s disease. Front Aging Neurosci. 2023;14:1058665. doi:10.3389/fnagi.2022.1058665 DOI: https://doi.org/10.3389/fnagi.2022.1058665
Ji H, Wang Y, Liu G, Chang L, Chen Z, Zhou D, Xu X, Cui W, Hong Q, Jiang L, et al. Elevated OPRD1 promoter methylation in Alzheimer’s disease patients. PLoS One. 2017;12(3):e0172335. doi:10.1371/journal.pone.0172335 DOI: https://doi.org/10.1371/journal.pone.0172335
Qin W, Zhou A, Zuo X, Jia L, Li F, Wang Q, Li Y, Wei Y, Jin H, Cruchaga C, et al. Exome sequencing revealed PDE11A as a novel candidate gene for early-onset Alzheimer’s disease. Hum Mol Genet. 2021;30(9):811-822. doi:10.1093/hmg/ddab090 DOI: https://doi.org/10.1093/hmg/ddab090
Carrasquillo MM, Allen M, Burgess JD, Wang X, Strickland SL, Aryal S, Siuda J, Kachadoorian ML, Medway C, Younkin CS, et al. A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer’s disease risk and increased TREML1 and TREM2 brain gene expression. Alzheimers Dement. 2017;13(6):663-673. doi:10.1016/j.jalz.2016.10.005 DOI: https://doi.org/10.1016/j.jalz.2016.10.005
Laske C, Leyhe T, Stransky E, Eschweiler GW, Bueltmann A, Langer H, Stellos K, Gawaz M. Association of platelet-derived soluble glycoprotein VI in plasma with Alzheimer’s disease. J Psychiatr Res. 2008;42(9):746-751. doi:10.1016/j.jpsychires.2007.07.017 DOI: https://doi.org/10.1016/j.jpsychires.2007.07.017
Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. Inhibition of Bruton’s Tyrosine Kinase Modulates Microglial Phagocytosis: Therapeutic Implications for Alzheimer’s Disease. J Neuroimmune Pharmacol. 2019;14(3):448-461. doi:10.1007/s11481-019-09839-0 DOI: https://doi.org/10.1007/s11481-019-09839-0
Ramos MC, Tenorio R, Martínez-García A, Sastre I, Vilella-Cuadrada E, Frank A, Rosich-Estragó M, Valdivieso F, Bullido MJ. Association of DSC1, a gene modulated by adrenergic stimulation, with Alzheimer’s disease. Neurosci Lett. 2006;408(3):203-208. doi:10.1016/j.neulet.2006.09.005 DOI: https://doi.org/10.1016/j.neulet.2006.09.005
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, et al. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer’s disease. Acta Neuropathol. 2022;144(4):637-650. doi:10.1007/s00401-022-02457-w DOI: https://doi.org/10.1007/s00401-022-02457-w
Ma L, Lu ZN. Role of ADH1B rs1229984 and ALDH2 rs671 gene polymorphisms in the development of Alzheimer’s disease. Genet Mol Res. 2016;15(4):10.4238/gmr.15048740. doi:10.4238/gmr.15048740 DOI: https://doi.org/10.4238/gmr.15048740
Atas U, Erin N, Tazegul G, Elpek GO, Yildirim B. Changes in ghrelin, substance P and vasoactive intestinal peptide levels in the gastroduodenal mucosa of patients with morbid obesity. Neuropeptides. 2021;89:102164. doi:10.1016/j.npep.2021.102164 DOI: https://doi.org/10.1016/j.npep.2021.102164
Yi Z, Bishop GA. Regulatory role of CD40 in obesity-induced insulin resistance. Adipocyte. 2014;4(1):65-69. doi:10.4161/adip.32214 DOI: https://doi.org/10.4161/adip.32214
Bille DS, Banasik K, Justesen JM, Sandholt CH, Sandbæk A, Lauritzen T, Jørgensen T, Witte DR, Holm JC, Hansen T, et al. Implications of central obesity-related variants in LYPLAL1, NRXN3, MSRA, and TFAP2B on quantitative metabolic traits in adult Danes. PLoS One. 2011;6(6):e20640. doi:10.1371/journal.pone.0020640 DOI: https://doi.org/10.1371/journal.pone.0020640
Lear S, Pflimlin E, Zhou Z, Huang D, Weng S, Nguyen-Tran V, Joseph SB, Roller S, Peterson S, Li J, et al. Engineering of a Potent, Long-Acting NPY2R Agonist for Combination with a GLP-1R Agonist as a Multi-Hormonal Treatment for Obesity. J Med Chem. 2020;63(17):9660-9671. doi:10.1021/acs.jmedchem.0c00740 DOI: https://doi.org/10.1021/acs.jmedchem.0c00740
Dommel S, Blüher M. Does C-C Motif Chemokine Ligand 2 (CCL2) Link Obesity to a Pro-Inflammatory State?. Int J Mol Sci. 2021;22(3):1500. doi:10.3390/ijms22031500 DOI: https://doi.org/10.3390/ijms22031500
Zhang X, Hou X, Xu C, Cheng S, Ni X, Shi Y, Yao Y, Chen L, Hu MG, Xia D. Kaempferol regulates the thermogenic function of adipocytes in high-fat-diet-induced obesity via the CDK6/RUNX1/UCP1 signaling pathway. Food Funct. 2023;14(18):8201-8216. doi:10.1039/d3fo00613a DOI: https://doi.org/10.1039/D3FO00613A
Pan DZ, Miao Z, Comenho C, Rajkumar S, Koka A, Lee SHT, Alvarez M, Kaminska D, Ko A, Sinsheimer JS, et al. Identification of TBX15 as an adipose master trans regulator of abdominal obesity genes. Genome Med. 2021;13(1):123.doi:10.1186/s13073-021-00939-2 DOI: https://doi.org/10.1186/s13073-021-00939-2
Masaki M, Kurisaki T, Shirakawa K, Sehara-Fujisawa A. Role of meltrin {alpha} (ADAM12) in obesity induced by high- fat diet. Endocrinology. 2005;146(4):1752-1763. doi:10.1210/en.2004-1082 DOI: https://doi.org/10.1210/en.2004-1082
Cheng ST, Wu S, Su CW, Teng MS, Hsu LA, Ko YL. Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J Formos Med Assoc. 2017;116(1):18-23. doi:10.1016/j.jfma.2015.12.002 DOI: https://doi.org/10.1016/j.jfma.2015.12.002
Sebastian M, Hsiao CJ, Futch HS, Eisinger RS, Dumeny L, Patel S, Gobena M, Katikaneni DS, Cohen J, Carpenter AM, et al. Obesity and STING1 genotype associate with 23-valent pneumococcal vaccination efficacy. JCI Insight. 2020;5(9):e136141. doi:10.1172/jci.insight.136141 DOI: https://doi.org/10.1172/jci.insight.136141
Raposinho PD, Pedrazzini T, White RB, Palmiter RD, Aubert ML. Chronic neuropeptide Y infusion into the lateral ventricle induces sustained feeding and obesity in mice lacking either Npy1r or Npy5r expression. Endocrinology. 2004;145(1):304-310. doi:10.1210/en.2003-0914 DOI: https://doi.org/10.1210/en.2003-0914
Alshammary AF, Khan IA. Screening of Obese Offspring of First-Cousin Consanguineous Subjects for the Angiotensin-Converting Enzyme Gene with a 287-bp Alu Sequence. J Obes Metab Syndr. 2021;30(1):63-71. doi:10.7570/jomes20086 DOI: https://doi.org/10.7570/jomes20086
Edwards TL, Velez Edwards DR, Villegas R, Cohen SS, Buchowski MS, Fowke JH, Schlundt D, Long J, Cai Q, Zheng W, et al. HTR1B, ADIPOR1, PPARGC1A, and CYP19A1 and obesity in a cohort of Caucasians and African Americans: an evaluation of gene-environment interactions and candidate genes . Am J Epidemiol. 2012;175(1):11-21. doi:10.1093/aje/kwr272 DOI: https://doi.org/10.1093/aje/kwr272
Shu Y, Gumma N, Hassan F, Branch DA, Baer LA, Ostrowski MC, Stanford KI, Baskin KK, Mehta KD. Hepatic protein kinase Cbeta deficiency mitigates late-onset obesity. J Biol Chem. 2023;299(8):104917. doi:10.1016/j.jbc.2023.104917 DOI: https://doi.org/10.1016/j.jbc.2023.104917
Guarino BD, Dado CD, Kumar A, Braza J, Harrington EO, Klinger JR. Deletion of the Npr3 gene increases severity of acute lung injury in obese mice. Pulm Circ. 2023;13(3):e12270. doi:10.1002/pul2.12270 DOI: https://doi.org/10.1002/pul2.12270
Rojas IY, Moyer BJ, Ringelberg CS, Tomlinson CR. Reversal of obesity and liver steatosis in mice via inhibition of aryl hydrocarbon receptor and altered gene expression of CYP1B1, PPARα, SCD1, and osteopontin. Int J Obes (Lond). 2020;44(4):948-963. doi:10.1038/s41366-019-0512-z DOI: https://doi.org/10.1038/s41366-019-0512-z
Kinik ST, Ozbek N, Yücel M, Haberal A, Cetintas S. Correlations among serum leptin levels, complete blood count parameters and peripheral CD34(+) cell count in prepubertal obese children. Ann Hematol. 2005;84(9):605-608. doi:10.1007/s00277-005-1064-y DOI: https://doi.org/10.1007/s00277-005-1064-y
Rugsarash W, Tungtrongchitr R, Petmitr S, Phonrat B, Pongpaew P, Harnroongroj T, Tungtrongchitr A. The genetic association between alpha-2-macroglobulin (A2M) gene deletion polymorphism and low serum A2M concentration in overweight/obese Thais. Nutr Neurosci. 2006;9(1-2):93-98. doi:10.1080/10284150600771777 DOI: https://doi.org/10.1080/10284150600771777
Lucarini G, Zizzi A, Rubini C, Ciolino F, Aspriello SD. VEGF, Microvessel Density, and CD44 as Inflammation Markers in Peri-implant Healthy Mucosa, Peri-implant Mucositis, and Peri-implantitis: Impact of Age, Smoking, PPD, and Obesity. Inflammation. 2019;42(2):682-689. doi:10.1007/s10753-018-0926-0 DOI: https://doi.org/10.1007/s10753-018-0926-0
Bag S, Ramaiah S, Anbarasu A. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study. J Theor Biol. 2015;364:344-354. doi:10.1016/j.jtbi.2014.09.034 DOI: https://doi.org/10.1016/j.jtbi.2014.09.034
Elias I, Ferré T, Vilà L, Muñoz S, Casellas A, Garcia M, Molas M, Agudo J, Roca C, Ruberte J, et al. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance. Diabetes. 2016;65(8):2139-2150. doi:10.2337/db16-0040 DOI: https://doi.org/10.2337/db16-0040
Tseng C, Han Y, Lv Z, Song Q, Wang K, Shen H, Chen Z. Glucose-stimulated PGC-1α couples with CBP and Runx2 to mediate intervertebral disc degeneration through transactivation of ADAMTS4/5 in diet-induced obesity mice. Bone. 2023;167:116617. doi:10.1016/j.bone.2022.116617 DOI: https://doi.org/10.1016/j.bone.2022.116617
Mirea AM, Stienstra R, Kanneganti TD, Tack CJ, Chavakis T, Toonen EJM, Joosten LAB. Mice Deficient in the IL-1β Activation Genes Prtn3, Elane, and Casp1 Are Protected Against the Development of Obesity-Induced NAFLD. Inflammation. 2020;43(3):1054-1064. doi:10.1007/s10753-020-01190-4 DOI: https://doi.org/10.1007/s10753-020-01190-4
Cuevas AM, Clark JM, Potter JJ. Increased TLR/MyD88 signaling in patients with obesity: is there a link to COVID-19 disease severity?. Int J Obes (Lond). 2021;45(5):1152-1154. doi:10.1038/s41366-021-00768-8 DOI: https://doi.org/10.1038/s41366-021-00768-8
Kolinko L, Shlykova O, Izmailova O, Vesnina L, Kaidashev I. SIRT1 contributes to polarization of peripheral blood monocytes by increasing stat6 expression in young people with overweight and low-risk obesity. Georgian Med News. 2021;(313):102-112.
Arias-Loste MT, Iruzubieta P, Puente Á, Ramos D, Santa Cruz C, Estébanez Á, Llerena S, Alonso-Martín C, San Segundo D, Álvarez L, et al. Increased Expression Profile and Functionality of TLR6 in Peripheral Blood Mononuclear Cells and Hepatocytes of Morbidly Obese Patients with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(11):1878. doi:10.3390/ijms17111878 DOI: https://doi.org/10.3390/ijms17111878
Feng X, Ding Y, Zhou M, Song N, Ding Y. Integrative Analysis of Exosomal miR-452 and miR-4713 Downregulating NPY1R for the Prevention of Childhood Obesity. Dis Markers. 2022;2022:2843353. doi:10.1155/2022/2843353 DOI: https://doi.org/10.1155/2022/2843353
Mohany KM, Al Rugaie O, Al-Wutayd O, Alsharidah M, Al-Nafeesah A. Circulating miR-15b, Annexin A1, procalcitonin and interleukin-6 levels differentiate children with metabolically unhealthy obesity from those with metabolically healthy obesity: A case-control study. Exp Ther Med. 2022;23(6):403. doi:10.3892/etm.2022.11330 DOI: https://doi.org/10.3892/etm.2022.11330
Abaj F, Saeedy SAG, Mirzaei K. Mediation role of body fat distribution (FD) on the relationship between CAV1 rs3807992 polymorphism and metabolic syndrome in overweight and obese women. BMC Med Genomics. 2021;14(1):202. doi:10.1186/s12920-021-01050-6 DOI: https://doi.org/10.1186/s12920-021-01050-6
Michaelides M, Miller ML, Egervari G, Primeaux SD, Gomez JL, Ellis RJ, Landry JA, Szutorisz H, Hoffman AF, Lupica CR, et al. Striatal Rgs4 regulates feeding and susceptibility to diet-induced obesity. Mol Psychiatry. 2020;25(9):2058-2069. doi:10.1038/s41380-018-0120-7 DOI: https://doi.org/10.1038/s41380-018-0120-7
El-Sayed Moustafa JS, Eleftherohorinou H, de Smith AJ, Andersson-Assarsson JC, Alves AC, Hadjigeorgiou E, Walters RG, Asher JE, Bottolo L, Buxton JL, et al. Novel association approach for variable number tandem repeats (VNTRs) identifies DOCK5 as a susceptibility gene for severe obesity. Hum Mol Genet. 2012;21(16):3727-3738. doi:10.1093/hmg/dds187 DOI: https://doi.org/10.1093/hmg/dds187
Abdul Majeed S, Dunzendorfer H, Weiner J, Heiker JT, Kiess W, Körner A, Landgraf K. COBL, MKX and MYOC Are Potential Regulators of Brown Adipose Tissue Development Associated with Obesity-Related Metabolic Dysfunction in Children. Int J Mol Sci. 2023;24(4):3085. doi:10.3390/ijms24043085 DOI: https://doi.org/10.3390/ijms24043085
Liu X, Zhao L, Chen Y, Gao Y, Tian Q, Son JS, Chae SA, de Avila JM, Zhu MJ, Du M. Obesity induces adipose fibrosis and collagen cross-linking through suppressing AMPK and enhancing lysyl oxidase expression. Biochim Biophys Acta Mol Basis Dis. 2022;1868(9):166454. doi:10.1016/j.bbadis.2022.166454 DOI: https://doi.org/10.1016/j.bbadis.2022.166454
Gabriel TL, Mirzaian M, Hooibrink B, Ottenhoff R, van Roomen C, Aerts JMFG, van Eijk M. Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS One. 2017;12(7):e0182075. doi:10.1371/journal.pone.0182075 DOI: https://doi.org/10.1371/journal.pone.0182075
Cinkajzlová A, Lacinová Z, Kloučková J, Kaválková P, Trachta P, Kosák M, Krátký J, Kasalický M, DoleŽalová K, Mráz M, et al. An alternatively activated macrophage marker CD163 in severely obese patients: the influence of very low-calorie diet and bariatric surgery. Physiol Res. 2017;66(4):641-652. doi:10.33549/physiolres.933522 DOI: https://doi.org/10.33549/physiolres.933522
Yang Y, Zhang Y, Zhou X, Chen D, Ouyang G, Liu Y, Cui D. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett. 2021;595(16):2099-2112. doi:10.1002/1873-3468.14154 DOI: https://doi.org/10.1002/1873-3468.14154
Sarver DC, Wong GW. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19. Biochem Biophys Res Commun. 2021;538:92-96. doi:10.1016/j.bbrc.2020.10.066 DOI: https://doi.org/10.1016/j.bbrc.2020.10.066
Ribeiro SMTL, Lopes LR, Paula Costa G, Figueiredo VP, Shrestha D, Batista AP, Nicolato RLC, Oliveira FLP, Gomes JAS, Talvani A. CXCL-16, IL-17, and bone morphogenetic protein 2 (BMP-2) are associated with overweight and obesity conditions in middle-aged and elderly women. Immun Ageing. 2017;14:6. doi:10.1186/s12979-017-0089-0 DOI: https://doi.org/10.1186/s12979-017-0089-0
Pomar CA, Bonet ML, Ferre-Beltrán A, Fraile-Ribot PA, García-Gasalla M, Riera M, Picó C, Palou A. Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines. 2022;10(8):2007. doi:10.3390/biomedicines10082007 DOI: https://doi.org/10.3390/biomedicines10082007
Barat-Houari M, Clément K, Vatin V, Dina C, Bonhomme G, Vasseur F, Guy-Grand B, Froguel P. Positional candidate gene analysis of Lim domain homeobox gene (Isl-1) on chromosome 5q11-q13 in a French morbidly obese population suggests indication for association with type 2 diabetes. Diabetes. 2002;51(5):1640-1643. doi:10.2337/diabetes.51.5.1640 DOI: https://doi.org/10.2337/diabetes.51.5.1640
Gregoor JG, van der Weide J, Loovers HM, van Megen HJ, Egberts TC, Heerdink ER. Polymorphisms of the LEP, LEPR and HTR2C gene: obesity and BMI change in patients using antipsychotic medication in a naturalistic setting. Pharmacogenomics. 2011;12(6):919-923. doi:10.2217/pgs.11.40 DOI: https://doi.org/10.2217/pgs.11.40
Zhang W, Shi B, Li S, Liu Z, Li S, Dong S, Cheng Y, Zhu J, Zhang G, Zhong M. Sleeve gastrectomy improves lipid dysmetabolism by downregulating the USP20-HSPA2 axis in diet-induced obese mice. Front Endocrinol (Lausanne). 2022;13:1041027. doi:10.3389/fendo.2022.1041027 DOI: https://doi.org/10.3389/fendo.2022.1041027
Li B, Leung JCK, Chan LYY, Yiu WH, Li Y, Lok SWY, Liu WH, Chan KW, Tse HF, Lai KN, et al. Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Transl Med. 2019;8(9):898-910. doi:10.1002/sctm.18-0265 DOI: https://doi.org/10.1002/sctm.18-0265
Shunmugam V, Say YH. Evaluation of Association of ADRA2A rs553668 and ACE I/D Gene Polymorphisms with Obesity Traits in the Setapak Population, Malaysia. Iran Red Crescent Med J. 2016;18(2):e22452. doi:10.5812/ircmj.22452 DOI: https://doi.org/10.5812/ircmj.22452
de Oliveira MFA, Talvani A, Rocha-Vieira E. IL-33 in obesity: where do we go from here?. Inflamm Res. 2019;68(3):185-194. doi:10.1007/s00011-019-01214-2 DOI: https://doi.org/10.1007/s00011-019-01214-2
Aradillas-Garc X Cd C, Cruz M, Pérez-Luque E, Garay-Sevilla ME, Malacara JM, R A, Peralta J, Burguete-García A, Alegría-Torres JA. Obesity is associated with the Arg389Gly ADRB1 but not with the Trp64Arg ADRB3 polymorphism in children from San Luis PotosÍ and León, México. J Biomed Res. 2016;31(1):40-46. doi:10.7555/JBR.30.20150169 DOI: https://doi.org/10.7555/JBR.30.20150169
He G, Gu J, Wang H, Cheng S, Xiong Q, Ke M, Hu Y, Feng J, Song L, Liu Z, et al. Nr2e1 deficiency aggravates insulin resistance and chronic inflammation of visceral adipose tissues in a diet-induced obese mice model. Life Sci. 2021;278:119562. doi:10.1016/j.lfs.2021.119562 DOI: https://doi.org/10.1016/j.lfs.2021.119562
Lin X, Yang Y, Qu J, Wang X. Aerobic exercise decreases chemerin/CMKLR1 in the serum and peripheral metabolic organs of obesity and diabetes rats by increasing PPARγ. Nutr Metab (Lond). 2019;16:17. doi:10.1186/s12986-019-0344-9 DOI: https://doi.org/10.1186/s12986-019-0344-9
Cheng X, Shihabudeen Haider Ali MS, Moran M, Viana MP, Schlichte SL, Zimmerman MC, Khalimonchuk O, Feinberg MW, Sun X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol. 2021;40:101863. doi:10.1016/j.redox.2021.101863 DOI: https://doi.org/10.1016/j.redox.2021.101863
Bodur A, Kahraman C, Us Altay D, Rendi TA, Menteşe A, Alver A. Investigation of the relationship between oxidative stress and SCUBE1 levels in high fat diet-induced obese rats. Turk J Med Sci. 2018;48(1):196-201.doi:10.3906/sag-1709-160 DOI: https://doi.org/10.3906/sag-1709-160
Yi H, Liu C, Shi J, Wang S, Zhang H, He Y, Tao J, Li S, Zhang R. EGCG Alleviates Obesity-Induced Myocardial Fibrosis in Rats by Enhancing Expression of SCN5A. Front Cardiovasc Med. 2022;9:869279. doi:10.3389/fcvm.2022.869279 DOI: https://doi.org/10.3389/fcvm.2022.869279
Kuem N, Song SJ, Yu R, Yun JW, Park T. Oleuropein attenuates visceral adiposity in high-fat diet-induced obese mice through the modulation of WNT10b- and galanin-mediated signalings. Mol Nutr Food Res. 2014;58(11):2166-2176. doi:10.1002/mnfr.201400159 DOI: https://doi.org/10.1002/mnfr.201400159
Jo J, Sull JW, Park EJ, Jee SH. Effects of smoking and obesity on the association between CDH13 (rs3865188) and adiponectin among Korean men: the KARE study. Obesity (Silver Spring). 2012;20(8):1683-1687. doi:10.1038/oby.2011.128 DOI: https://doi.org/10.1038/oby.2011.128
Costa PB, Aranalde LC, Correia PE, Cardozo GRF, da Silva ES, da Costa MS, Valle SC, Bertacco RTA, Pieniz S, Araujo RC, et al. Combination of ACTN3 R577X and ACE I/D polymorphisms as a tool for prediction of obesity risk in children. Int J Obes (Lond). 2021;45(2):337-341. doi:10.1038/s41366-020-00668-3 DOI: https://doi.org/10.1038/s41366-020-00668-3
Aliasghari F, Nazm SA, Yasari S, Mahdavi R, Bonyadi M. Associations of the ANKK1 and DRD2 gene polymorphisms with overweight, obesity and hedonic hunger among women from the Northwest of Iran. Eat Weight Disord. 2021;26(1):305-312. doi:10.1007/s40519-020-00851-5 DOI: https://doi.org/10.1007/s40519-020-00851-5
Rial-Pensado E, Freire-Agulleiro O, Ríos M, Guo DF, Contreras C, Seoane-Collazo P, Tovar S, Nogueiras R, Diéguez C, Rahmouni K, et al. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol Metab. 2022;59:101465. doi:10.1016/j.molmet.2022.101465 DOI: https://doi.org/10.1016/j.molmet.2022.101465
Cong L, Zhu Y, Pang H, Guanjun TU. The interaction between aggrecan gene VNTR polymorphism and obesity in predicting incident symptomatic lumbar disc herniation. Connect Tissue Res. 2014;55(5-6):384-390. doi:10.3109/03008207.2014.959117 DOI: https://doi.org/10.3109/03008207.2014.959117
Sugizaki T, Watanabe M, Horai Y, Kaneko-Iwasaki N, Arita E, Miyazaki T, Morimoto K, Honda A, Irie J, Itoh H. The Niemann-Pick C1 like 1 (NPC1L1) inhibitor ezetimibe improves metabolic disease via decreased liver X receptor (LXR) activity in liver of obese male mice. Endocrinology. 2014;155(8):2810-2819. doi:10.1210/en.2013-2143 DOI: https://doi.org/10.1210/en.2013-2143
Morales LD, Cromack DT, Tripathy D, Fourcaudot M, Kumar S, Curran JE, Carless M, Göring HHH, Hu SL, Lopez-Alvarenga JC, et al. Further evidence supporting a potential role for ADH1B in obesity. Sci Rep. 2021;11(1):1932. doi:10.1038/s41598-020-80563-z DOI: https://doi.org/10.1038/s41598-020-80563-z
Said SI. Vasoactive intestinal peptide in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(7):786. doi:10.1164/ajrccm.185.7.786 DOI: https://doi.org/10.1164/ajrccm.185.7.786
Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, Jiang L, Teos L, Avolio T, Lin D, et al. GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. Sci Rep. 2023;13(1):6593. doi:10.1038/s41598-023-33779-8 DOI: https://doi.org/10.1038/s41598-023-33779-8
Huang YQ, Jie LI, Chen JY, Tang ST, Huang C, Feng YQ. The relationship between soluble CD40 ligand level and atherosclerosis in white-coat hypertension. J Hum Hypertens. 2017;32(1):40-45. doi:10.1038/s41371-017-0016-z DOI: https://doi.org/10.1038/s41371-017-0016-z
Mazzei L, García M, Calvo JP, Casarotto M, Fornés M, Abud MA, Cuello-Carrión D, Ferder L, Manucha W. Changes in renal WT-1 expression preceding hypertension development. BMC Nephrol. 2016;17:34. doi:10.1186/s12882-016-0250-6 DOI: https://doi.org/10.1186/s12882-016-0250-6
Chen CJ, Lin TY, Wang CL, Ho CK, Chuang HY, Yu HS. Interactive Effects between Chronic Lead Exposure and the Homeostatic Iron Regulator Transport HFE Polymorphism on the Human Red Blood Cell Mean Corpuscular Volume (MCV). Int J Environ Res Public Health. 2019;16(3):354. doi:10.3390/ijerph16030354 DOI: https://doi.org/10.3390/ijerph16030354
Torres G, Lancaster AC, Yang J, Griffiths M, Brandal S, Damico R, Vaidya D, Simpson CE, Martin LJ, Pauciulo MW, et al. Low-affinity insulin-like growth factor binding protein 7 and its association with pulmonary arterial hypertension severity and survival. Pulm Circ. 2023;13(3):e12284. doi:10.1002/pul2.12284 DOI: https://doi.org/10.1002/pul2.12284
Alsheikh AJ, Dasinger JH, Abais-Battad JM, Fehrenbach DJ, Yang C, Cowley AW Jr, Mattson DL. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension. Am J Physiol Renal Physiol. 2020;318(4):F982-F993. doi:10.1152/ajprenal.00521.2019 DOI: https://doi.org/10.1152/ajprenal.00521.2019
Zhang J, Zhong LJ, Wang Y, Liu LM, Cong X, Xiang RL, Wu LL, Yu GY, Zhang Y. Proteomic analysis reveals an impaired Ca2+/AQP5 pathway in the submandibular gland in hypertension. Sci Rep. 2017;7(1):14524. doi:10.1038/s41598-017-15211-0 DOI: https://doi.org/10.1038/s41598-017-15211-0
Jeong EM, Pereira M, So EY, Wu KQ, Del Tatto M, Wen S, Dooner MS, Dubielecka PM, Reginato AM, Ventetuolo CE, et al. Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovasc Res. 2022;118(16):3211-3224. doi:10.1093/cvr/cvac001 DOI: https://doi.org/10.1093/cvr/cvac001
Shnayder NA, Petrova MM, Moskaleva PV, Shesternya PA, Pozhilenkova EA, Nasyrova RF. The Role of Single-Nucleotide Variants of NOS1, NOS2, and NOS3 Genes in the Comorbidity of Arterial Hypertension and Tension-Type Headache. Molecules. 2021;26(6):1556. doi:10.3390/molecules26061556 DOI: https://doi.org/10.3390/molecules26061556
Wu B, Hao Y, Shi J, Geng N, Li T, Chen Y, Sun Z, Zheng L, Li H, Li N, et al. Association between xanthine dehydrogenase tag single nucleotide polymorphisms and essential hypertension. Mol Med Rep. 2015;12(4):5685-5690. doi:10.3892/mmr.2015.4135 DOI: https://doi.org/10.3892/mmr.2015.4135
Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, Kuwabara Y, Yamada C, Yamada Y, Tokudome T, et al. Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining Endothelial Integrity. Hypertension. 2017;69(2):286-296. doi:10.1161/HYPERTENSIONAHA.116.08219 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.116.08219
Parpaleix A, Amsellem V, Houssaini A, Abid S, Breau M, Marcos E, Sawaki D, Delcroix M, Quarck R, Maillard A, et al. ole of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. Eur Respir J. 2016;48(2):470-483. doi:10.1183/13993003.01448-2015 DOI: https://doi.org/10.1183/13993003.01448-2015
Fogelgren B, Yang S, Sharp IC, Huckstep OJ, Ma W, Somponpun SJ, Carlson EC, Uyehara CF, Lozanoff S. Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure, and hypertension in Br/+ adult mice. Am J Physiol Renal Physiol. 2009;296(5):F1166-F1178. doi:10.1152/ajprenal.90550.2008 DOI: https://doi.org/10.1152/ajprenal.90550.2008
Le D, Brown L, Malik K, Murakami S. Two Opposing Functions of Angiotensin-Converting Enzyme (ACE) That Links Hypertension, Dementia, and Aging. Int J Mol Sci. 2021;22(24):13178. doi:10.3390/ijms222413178 DOI: https://doi.org/10.3390/ijms222413178
Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, Nilsen M, Loughlin L, Mair KM, MacLean MR. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res. 2013;99(1):24-34. doi:10.1093/cvr/cvt064 DOI: https://doi.org/10.1093/cvr/cvt064
Shimizu Y, Kawashiri SY, Nobusue K, Yamanashi H, Nagata Y, Maeda T. Associations between handgrip strength and hypertension in relation to circulating CD34-positive cell levels among Japanese older men: a cross-sectional study. Environ Health Prev Med. 2021;26(1):62. doi:10.1186/s12199-021-00982-w DOI: https://doi.org/10.1186/s12199-021-00982-w
Kim M, Yoo HJ, Kim M, Kim J, Baek SH, Song M, Lee JH. EPHA6 rs4857055 C > T polymorphism associates with hypertension through triglyceride and LDL particle size in the Korean population. Lipids Health Dis. 2017;16(1):230. doi:10.1186/s12944-017-0620-5 DOI: https://doi.org/10.1186/s12944-017-0620-5
Isobe S, Kataoka M, Endo J, Moriyama H, Okazaki S, Tsuchihashi K, Katsumata Y, Yamamoto T, Shirakawa K, Yoshida N, et al. Endothelial-Mesenchymal Transition Drives Expression of CD44 Variant and xCT in Pulmonary Hypertension. Am J Respir Cell Mol Biol. 2019;61(3):367-379. doi:10.1165/rcmb.2018-0231OC DOI: https://doi.org/10.1165/rcmb.2018-0231OC
Ota H, Furuhashi M, Ishimura S, Koyama M, Okazaki Y, Mita T, Fuseya T, Yamashita T, Tanaka M, Yoshida H, et al. Elevation of fatty acid-binding protein 4 is predisposed by family history of hypertension and contributes to blood pressure elevation. Am J Hypertens. 2012;25(10):1124-1130. doi:10.1038/ajh.2012.88 DOI: https://doi.org/10.1038/ajh.2012.88
Liu A, Liu Y, Li B, Yang M, Liu Y, Su J. Role of miR-223-3p in pulmonary arterial hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif. 2019;52(2):e12550. doi:10.1111/cpr.12550 DOI: https://doi.org/10.1111/cpr.12550
Yuan X, Wang Z, Wang L, Zhao Q, Gong S, Sun Y, Liu Q, Yuan P. Increased Levels of Runt-Related Transcription Factor 2 Are Associated With Poor Survival of Patients With Idiopathic Pulmonary Arterial Hypertension. Am J Mens Health. 2020;14(4):1557988320945458. doi:10.1177/1557988320945458 DOI: https://doi.org/10.1177/1557988320945458
Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A, et al. Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2019;316(6):L999-L1012. doi:10.1152/ajplung.00322.2018 DOI: https://doi.org/10.1152/ajplung.00322.2018
Qi J, Yu XJ, Fu LY, Liu KL, Gao TT, Tu JW, Kang KB, Shi XL, Li HB, Li Y, et al. Exercise Training Attenuates Hypertension Through TLR4/MyD88/NF-κB Signaling in the Hypothalamic Paraventricular Nucleus. Front Neurosci. 2019;13:1138. doi:10.3389/fnins.2019.01138 DOI: https://doi.org/10.3389/fnins.2019.01138
Zeng C, Armando I, Yang J, Jose PA. Dopamine Receptor D1R and D3R and GRK4 Interaction in Hypertension. Yale J Biol Med. 2023;96(1):95-105. doi:10.59249/MKRR9549 DOI: https://doi.org/10.59249/MKRR9549
Huo M, Cao X, Zhang H, Lau CW, Hong H, Chen FM, Huang Y, Chawla A, Tian XY. Loss of myeloid Bmal1 exacerbates hypertensive vascular remodelling through interaction with STAT6 in mice. Cardiovasc Res. 2022;118(13):2859-2874. doi:10.1093/cvr/cvab336 DOI: https://doi.org/10.1093/cvr/cvab336
He KY, Kelly TN, Wang H, Liang J, Zhu L, Cade BE, Assimes TL, Becker LC, Beitelshees AL, Bielak LF, et al. Rare coding variants in RCN3 are associated with blood pressure. BMC Genomics. 2022;23(1):148. doi:10.1186/s12864-022-08356-4 DOI: https://doi.org/10.1186/s12864-022-08356-4
Yang L, Liang H, Shen L, Guan Z, Meng X. LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci. 2019;237:116769. doi:10.1016/j.lfs.2019.116769
Sales ML, Schreiber R, Ferreira-Sae MC, Fernandes MN, Piveta CS, Cipolli JA, Cardoso CC, Matos-Souza JR, Geloneze B, Franchini KG, et al. Toll-like receptor 6 Ser249Pro polymorphism is associated with lower left ventricular wall thickness and inflammatory response in hypertensive women. Am J Hypertens. 2010;23(6):649-654. doi:10.1038/ajh.2010.24 DOI: https://doi.org/10.1038/ajh.2010.24
Arvidsson M, Ahmed A, Säleby J, Ahmed S, Hesselstrand R, Rådegran G. Plasma TRAIL and ANXA1 in diagnosis and prognostication of pulmonary arterial hypertension. Pulm Circ. 2023;13(3):e12269. doi:10.1002/pul2.12269 DOI: https://doi.org/10.1002/pul2.12269
Nakayama T, Nakazato T, Naruse H, Fu Z, Wang Z, Soma M, Hoshino T, Shimodaira M, Aoi N. Haplotype-based, case-control study of the receptor (calcitonin) activity-modifying protein (RAMP) 1 gene in essential hypertension. J Hum Hypertens. 2017;31(5):361-365. doi:10.1038/jhh.2016.96 DOI: https://doi.org/10.1038/jhh.2016.96
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel). 2021;9(4):58. doi:10.3390/medsci9040058 DOI: https://doi.org/10.3390/medsci9040058
Martínez-Revelles S, García-Redondo AB, Avendaño MS, Varona S, Palao T, Orriols M, Roque FR, Fortuño A, Touyz RM, et al. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK. Antioxid Redox Signal. 2017;27(7):379-397. doi:10.1089/ars.2016.6642 DOI: https://doi.org/10.1089/ars.2016.6642
Yang K, Jiang K, Xu Z, Song Y, Wang J. Targeting sphingosine kinase 1 for the treatment of pulmonary arterial hypertension. Future Med Chem. 2019;11(22):2939-2953. doi:10.4155/fmc-2019-0130 DOI: https://doi.org/10.4155/fmc-2019-0130
Li Y, You C, Liu Z, He F, Zhao F, Song X, Xie Z, Wei S, Yang Y, Wei H, et al. CYP2C8 and CYP2J2 gene variations increase the risk of hypertensive intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2023;32(3):106974. doi:10.1016/j.jstrokecerebrovasdis.2022.106974 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106974
Jasiewicz M, Kowal K, Kowal-Bielecka O, Knapp M, Skiepko R, Bodzenta-Lukaszyk A, Sobkowicz B, Musial WJ, Kaminski KA. Serum levels of CD163 and TWEAK in patients with pulmonary arterial hypertension. Cytokine. 2014;66(1):40-45. doi:10.1016/j.cyto.2013.12.013 DOI: https://doi.org/10.1016/j.cyto.2013.12.013
Yoshida T, Nagaoka T, Nagata Y, Suzuki Y, Tsutsumi T, Kuriyama S, Watanabe J, Togo S, Takahashi F, Matsushita M, et al. Periostin-related progression of different types of experimental pulmonary hypertension: A role for M2 macrophage and FGF-2 signalling. Respirology. 2022;27(7):529-538. doi:10.1111/resp.14249 DOI: https://doi.org/10.1111/resp.14249
Govender N, Khaliq O, Moodley J, Naicker T. Unravelling the Mechanistic Role of ACE2 and TMPRSS2 in Hypertension: A Risk Factor for COVID-19. Curr Hypertens Rev. 2022;18(2):130-137. doi:10.2174/1573402118666220816090809 DOI: https://doi.org/10.2174/1573402118666220816090809
Rangel-Filho A, Lazar J, Moreno C, Geurts A, Jacob HJ. Rab38 modulates proteinuria in model of hypertension-associated renal disease. J Am Soc Nephrol. 2013;24(2):283-292. doi:10.1681/ASN.2012090927 DOI: https://doi.org/10.1681/ASN.2012090927
Bai Z, Xu L, Dai Y, Yuan Q, Zhou Z. ECM2 and GLT8D2 in human pulmonary artery hypertension: fruits from weighted gene co-expression network analysis. J Thorac Dis. 2021;13(4):2242-2254. doi:10.21037/jtd-20-3069 DOI: https://doi.org/10.21037/jtd-20-3069
Zhang L, Sun Y, Zhang X, Shan X, Li J, Yao Y, Shu Y, Lin K, Huang X, Yang Z, et al. Three Novel Genetic Variants in the FAM110D, CACNA1A, and NLRP12 Genes Are Associated With Susceptibility to Hypertension Among Dai People. Am J Hypertens. 2021;34(8):874-879. doi:10.1093/ajh/hpab040 DOI: https://doi.org/10.1093/ajh/hpab040
Kasahara T, Ogata T, Nakanishi N, Tomita S, Higuchi Y, Maruyama N, Hamaoka T, Matoba S. Cavin-2 loss exacerbates hypoxia-induced pulmonary hypertension with excessive eNOS phosphorylation and protein nitration. Heliyon. 2023;9(6):e17193. doi:10.1016/j.heliyon.2023.e17193 DOI: https://doi.org/10.1016/j.heliyon.2023.e17193
Liang H, Ma Z, Peng H, He L, Hu Z, Wang Y. CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension. Sci Rep. 2016;6:28715. doi:10.1038/srep28715 DOI: https://doi.org/10.1038/srep28715
Kutluk MG, Kadem N, Bektas O, Randa NC, Tuncer GO, Albayrak P, Eminoglu T, Teber ST. A Novel Variant of COL6A2 Gene Causing Bethlem Myopathy and Evaluation of Essential Hypertension. Ann Indian Acad Neurol. 2021;24(2):280-282. doi:10.4103/aian.AIAN_247_20 DOI: https://doi.org/10.4103/aian.AIAN_247_20
Keranov S, Dörr O, Jafari L, Liebetrau C, Keller T, Troidl C, Kriechbaum S, Voss S, Richter M, Tello K, et al. SPARCL1 as a biomarker of maladaptive right ventricular remodelling in pulmonary hypertension. Biomarkers. 2020;25(3):290-295. doi:10.1080/1354750X.2020.1745889 DOI: https://doi.org/10.1080/1354750X.2020.1745889
Morishita R, Moriguchi A, Higaki J, Ogihara T. Hepatocyte growth factor (HGF) as a potential index of severity of hypertension. Hypertens Res. 1999;22(3):161-167. doi:10.1291/hypres.22.161 DOI: https://doi.org/10.1291/hypres.22.161
Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, Jose PA, Duan S, Xu FJ, Yang Z. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na+/H+ Exchanger 3 Activity Through a PKC (Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway. Hypertension. 2022;79(8):1668-1679. doi:10.1161/HYPERTENSIONAHA.121.18791 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.121.18791
Timasheva YR, Nasibullin TR, Tuktarova IA, Erdman VV, Mustafina OE. CXCL13 polymorphism is associated with essential hypertension in Tatars from Russia. Mol Biol Rep. 2018;45(5):1557-1564. doi:10.1007/s11033-018-4257-x DOI: https://doi.org/10.1007/s11033-018-4257-x
Wang EL, Zhang JJ, Luo FM, Fu MY, Li D, Peng J, Liu B. Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway. Life Sci. 2023;328:121879. doi:10.1016/j.lfs.2023.121879 DOI: https://doi.org/10.1016/j.lfs.2023.121879
Abais-Battad JM, Lund H, Fehrenbach DJ, Dasinger JH, Alsheikh AJ, Mattson DL. Parental Dietary Protein Source and the Role of CMKLR1 in Determining the Severity of Dahl Salt-Sensitive Hypertension. Hypertension. 2019;73(2):440-448. doi:10.1161/HYPERTENSIONAHA.118.11994 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.118.11994
Sun W, Tang Y, Tai YY, Handen A, Zhao J, Speyer G, Al Aaraj Y, Watson A, Romanelli ME, Sembrat J, et al. SCUBE1 Controls BMPR2-Relevant Pulmonary Endothelial Function: Implications for Diagnostic Marker Development in Pulmonary Arterial Hypertension. JACC Basic Transl Sci. 2020;5(11):1073-1092. doi:10.1016/j.jacbts.2020.08.010 DOI: https://doi.org/10.1161/circ.142.suppl_3.15826
Sirivarasai J, Kaojarern S, Chanprasertyothin S, Panpunuan P, Petchpoung K, Tatsaneeyapant A, Yoovathaworn K, Sura T, Kaojarern S, Sritara P. Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: an analysis based on the EGAT study. Biomed Res Int. 2015;2015:856319. doi:10.1155/2015/856319 DOI: https://doi.org/10.1155/2015/856319
Ye P, Jiang XM, Qian WC, Zhang J. Inhibition of PCSK9 Improves the Development of Pulmonary Arterial Hypertension Via Down-Regulating Notch3 Expression. Cardiovasc Drugs Ther. 2023;10.1007/s10557-023-07458-9. doi:10.1007/s10557-023-07458-9 DOI: https://doi.org/10.1007/s10557-023-07458-9
Wu JH, Wang YJ, Liau JY, Lee NC, Wu ET. Rapid genetic diagnosis of neonatal persistent pulmonary hypertension with a novel FOXF1 mutation. Pediatr Neonatol. 2023;64(4):484-486. doi:10.1016/j.pedneo.2022.12.010 DOI: https://doi.org/10.1016/j.pedneo.2022.12.010
Kim HJ, Seo YS, Sung J, Son HY, Yun JM, Kwon H, Cho B, Kim JI, Park JH. Interactions of CDH13 gene polymorphisms and ambient PM10 air pollution exposure with blood pressure and hypertension in Korean men. Chemosphere. 2019;218:292-298. doi:10.1016/j.chemosphere.2018.11.125 DOI: https://doi.org/10.1016/j.chemosphere.2018.11.125
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol. 2023;6(1):826. doi:10.1038/s42003-023-05193-3 DOI: https://doi.org/10.1038/s42003-023-05193-3
Hu Y, Xia W, Li Y, Wang Q, Lin S, Wang B, Zhou C, Cui Y, Jiang Y, Pu X, et al. High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients. Hypertens Res. 2020;43(7):679-687. doi:10.1038/s41440-020-0409-1 DOI: https://doi.org/10.1038/s41440-020-0409-1
Nakano M, Koga M, Hashimoto T, Matsushita N, Masukawa D, Mizuno Y, Uchimura H, Niikura R, Miyazaki T, Nakamura F, et al. Right ventricular overloading is attenuated in monocrotaline-induced pulmonary hypertension model rats with a disrupted Gpr143 gene, the gene that encodes the 3,4-l-dihydroxyphenyalanine (l-DOPA) receptor. J Pharmacol Sci. 2022;148(2):214-220. doi:10.1016/j.jphs.2021.11.008 DOI: https://doi.org/10.1016/j.jphs.2021.11.008
Yu M, Wu X, Peng L, Yang M, Zhou H, Xu J, Wang J, Wang H, Xie W, Kong H. Inhibition of Bruton’s Tyrosine Kinase Alleviates Monocrotaline-Induced Pulmonary Arterial Hypertension by Modulating Macrophage Polarization. Oxid Med Cell Longev. 2022;2022:6526036. doi:10.1155/2022/6526036 DOI: https://doi.org/10.1155/2022/6526036
van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H, et al. Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ. 2023;13(1):e12200. doi:10.1002/pul2.12200 DOI: https://doi.org/10.1002/pul2.12200
Kwan T, Kazamel M, Thoenes K, Si Y, Jiang N, King PH. Wnt antagonist FRZB is a muscle biomarker of denervation atrophy in amyotrophic lateral sclerosis. Sci Rep. 2020;10(1):16679. doi:10.1038/s41598-020-73845-z DOI: https://doi.org/10.1038/s41598-020-73845-z
Yang X, Zheng J, Tian S, Chen Y, An R, Zhao Q, Xu Y. HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. J Neurol Sci. 2017;373:124-128. doi:10.1016/j.jns.2016.12.055 DOI: https://doi.org/10.1016/j.jns.2016.12.055
Matsumoto T, Imagama S, Hirano K, Ohgomori T, Natori T, Kobayashi K, Muramoto A, Ishiguro N, Kadomatsu K. CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model. Neurosci Lett. 2012;520(1):115-120. doi:10.1016/j.neulet.2012.05.048 DOI: https://doi.org/10.1016/j.neulet.2012.05.048
Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science. 2000;288(5464):335-339. doi:10.1126/science.288.5464.335 DOI: https://doi.org/10.1126/science.288.5464.335
Li PA, He Q, Cao T, Yong G, Szauter KM, Fong KS, Karlsson J, Keep MF, Csiszar K. Up-regulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Brain Res Mol Brain Res. 2004;120(2):115-122. doi:10.1016/j.molbrainres.2003.10.01 DOI: https://doi.org/10.1016/j.molbrainres.2003.10.013
Padhi AK, Narain P, Gomes J. Rare Angiogenin and Ribonuclease 4 variants associated with amyotrophic lateral sclerosis exhibit loss-of-function: a comprehensive in silico study. Metab Brain Dis. 2019;34(6):1661-1677. doi:10.1007/s11011-019-00473-6 DOI: https://doi.org/10.1007/s11011-019-00473-6
Majchrzak M, Drela K, Andrzejewska A, Rogujski P, Figurska S, Fiedorowicz M, Walczak P, Janowski M, Lukomska B, Stanaszek L. SOD1/Rag2 Mice with Low Copy Number of SOD1 Gene as a New Long-Living Immunodeficient Model of ALS. Sci Rep. 2019;9(1):799. doi:10.1038/s41598-018-37235-w DOI: https://doi.org/10.1038/s41598-018-37235-w
Agbemenyah HY, Agis-Balboa RC, Burkhardt S, Delalle I, Fischer A. Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiol Dis. 2014;62:135-143. doi:10.1016/j.nbd.2013.09.011 DOI: https://doi.org/10.1016/j.nbd.2013.09.011
McGrath ER, Himali JJ, Levy D, Yang Q, DeCarli CS, Courchesne P, Satizabal CL, Finney R, Vasan RS, Beiser AS, et al. Plasma EFEMP1 Is Associated with Brain Aging and Dementia: The Framingham Heart Study. J Alzheimers Dis. 2022;85(4):1657-1666. doi:10.3233/JAD-215053 DOI: https://doi.org/10.3233/JAD-215053
Irwin DJ, McMillan CT, Suh E, Powers J, Rascovsky K, Wood EM, Toledo JB, Arnold SE, Lee VM, Van Deerlin VM, et al. Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology. 2014;83(6):502-509. doi:10.1212/WNL.0000000000000668 DOI: https://doi.org/10.1212/WNL.0000000000000668
Kloster E, Saft C, Akkad DA, Epplen JT, Arning L. Association of age at onset in Huntington disease with functional promoter variations in NPY and NPY2R. J Mol Med (Berl). 2014;92(2):177-184. doi:10.1007/s00109-013-1092-3 DOI: https://doi.org/10.1007/s00109-013-1092-3
Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature. 1999;399(6733):263-267. doi:10.1038/20446 DOI: https://doi.org/10.1038/20446
Lee J, Hwang YJ, Shin JY, Lee WC, Wie J, Kim KY, Lee MY, Hwang D, Ratan RR, Pae AN, et al. Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington’s disease. Acta Neuropathol. 2013;125(5):727-739. doi:10.1007/s00401-013-1103-z DOI: https://doi.org/10.1007/s00401-013-1103-z
Chanda K, Das S, Chakraborty J, Bucha S, Maitra A, Chatterjee R, Mukhopadhyay D, Bhattacharyya NP. Altered Levels of Long NcRNAs Meg3 and Neat1 in Cell And Animal Models Of Huntington’s Disease. RNA Biol. 2018;15(10):1348-1363. doi:10.1080/15476286.2018.1534524 DOI: https://doi.org/10.1080/15476286.2018.1534524
Takamatsu G, Yanagi K, Koganebuchi K, Yoshida F, Lee JS, Toyama K, Hattori K, Katagiri C, Kondo T, Kunugi H, et al. Haplotype phasing of a bipolar disorder pedigree revealed rare multiple mutations of SPOCD1 gene in the 1p36-35 susceptibility locus. J Affect Disord. 2022;310:96-105. doi:10.1016/j.jad.2022.04.150 DOI: https://doi.org/10.1016/j.jad.2022.04.150
Lee SY, Chen SL, Chen SH, Chu CH, Chang YH, Lin SH, Huang SY, Tzeng NS, Kuo PH, Lee IH, et al. Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(2):382-387. doi:10.1016/j.pnpbp.2012.07.015 DOI: https://doi.org/10.1016/j.pnpbp.2012.07.015
Umehara H, Nakamura M, Nagai M, Kato Y, Ueno SI, Sano A. Positional cloning and comprehensive mutation analysis of a Japanese family with lithium-responsive bipolar disorder identifies a novel DOCK5 mutation. J Hum Genet. 2021;66(3):243-249. doi:10.1038/s10038-020-00840-7 DOI: https://doi.org/10.1038/s10038-020-00840-7
Massat I, Lerer B, Souery D, Blackwood D, Muir W, Kaneva R, Nöthen MM, Oruc L, Papadimitriou GN, Dikeos D, et al. HTR2C (cys23ser) polymorphism influences early onset in bipolar patients in a large European multicenter association study. Mol Psychiatry. 2007;12(9):797-798. doi:10.1038/sj.mp.4002018 DOI: https://doi.org/10.1038/sj.mp.4002018
Sabunciyan S, Yolken R, Ragan CM, Potash JB, Nimgaonkar VL, Dickerson F, Llenos IC, Weis S. Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(8):1083-1086. doi:10.1002/ajmg.b.30523 DOI: https://doi.org/10.1002/ajmg.b.30523
Rolstad S, Pålsson E, Ekman CJ, Eriksson E, Sellgren C, Landén M. Polymorphisms of dopamine pathway genes NRG1 and LMX1A are associated with cognitive performance in bipolar disorder. Bipolar Disord. 2015;17(8):859-868. doi:10.1111/bdi.12347 DOI: https://doi.org/10.1111/bdi.12347
McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, et al. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry. 2009;9:70. doi:10.1186/1471-244X-9-70 DOI: https://doi.org/10.1186/1471-244X-9-70
McElroy SL, Winham SJ, Cuellar-Barboza AB, Colby CL, Ho AM, Sicotte H, Larrabee BR, Crow S, Frye MA, Biernacka JM. Bipolar disorder with binge eating behavior: a genome-wide association study implicates PRR5-ARHGAP8. Transl Psychiatry. 2018;8(1):40. doi:10.1038/s41398-017-0085-3 DOI: https://doi.org/10.1038/s41398-017-0085-3
Van Den Bossche MJ, Strazisar M, De Bruyne S, Bervoets C, Lenaerts AS, De Zutter S, Nordin A, Norrback KF, Goossens D, De Rijk P, et al. Identification of a CACNA2D4 deletion in late onset bipolar disorder patients and implications for the involvement of voltage-dependent calcium channels in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(4):465-475. doi:10.1002/ajmg.b.32053 DOI: https://doi.org/10.1002/ajmg.b.32053
Fiorentino A, Sharp SI, McQuillin A. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Genet. 2015;23(9):1200-1206. doi:10.1038/ejhg.2014.261 DOI: https://doi.org/10.1038/ejhg.2014.261
Jacobsen NJ, Elvidge G, Franks EK, O’Donovan MC, Craddock N, Owen MJ. CUX2, a potential regulator of NCAM expression: genomic characterization and analysis as a positional candidate susceptibility gene for bipolar disorder. Am J Med Genet. 2001;105(3):295-300. doi:10.1002/ajmg.1325 DOI: https://doi.org/10.1002/ajmg.1325
Strauss KA, Markx S, Georgi B, Paul SM, Jinks RN, Hoshi T, McDonald A, First MB, Liu W, Benkert AR, et al. A population-based study of KCNH7 p.Arg394His and bipolar spectrum disorder. Hum Mol Genet. 2014;23(23):6395-6406. doi:10.1093/hmg/ddu335 DOI: https://doi.org/10.1093/hmg/ddu335
Xi Y, Zhang T, Sun W, Liang R, Ganesh S, Chen H. GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. Int J Mol Sci. 2022;23(23):15433. doi:10.3390/ijms232315433 DOI: https://doi.org/10.3390/ijms232315433
Zambonin JL, Dyment DA, Xi Y, Lamont RE, Hartley T, Miller E, Kerr M; Care4Rare Canada Consortium; Boycott KM, Parboosingh JS,Venkateswaran S. A novel mutation in LAMC3 associated with generalized polymicrogyria of the cortex and epilepsy. Neurogenetics. 2018;19(1):61-65. doi:10.1007/s10048-017-0534-4 DOI: https://doi.org/10.1007/s10048-017-0534-4
Lv Y, Wang Z, Liu C, Cui L. Identification of a novel CACNA1A mutation in a Chinese family with autosomal recessive progressive myoclonic epilepsy. Neuropsychiatr Dis Treat. 2017;13:2631-2636. doi:10.2147/NDT.S145774 DOI: https://doi.org/10.2147/NDT.S145774
Karkheiran S, Krebs CE, Makarov V, Nilipour Y, Hubert B, Darvish H, Frucht S, Shahidi GA, Buxbaum JD, Paisán-Ruiz C. Identification of COL6A2 mutations in progressive myoclonus epilepsy syndrome. Hum Genet. 2013;132(3):275-283. doi:10.1007/s00439-012-1248-1 DOI: https://doi.org/10.1007/s00439-012-1248-1
Matricardi S, De Liso P, Freri E, Costa P, Castellotti B, Magri S, Gellera C, Granata T, Musante L, Lesca G, et al. Neonatal developmental and epileptic encephalopathy due to autosomal recessive variants in SLC13A5 gene. Epilepsia. 2020;61(11):2474-2485. doi:10.1111/epi.16699 DOI: https://doi.org/10.1111/epi.16699
Maljevic S, Keren B, Aung YH, Forster IC, Mignot C, Buratti J, Lafitte A, Freihuber C, Rodan LH, Bergin A, et al. Novel GABRA2 variants in epileptic encephalopathy and intellectual disability with seizures. Brain. 2019;142(5):e15. doi:10.1093/brain/awz079 DOI: https://doi.org/10.1093/brain/awz079
Nappi M, Barrese V, Carotenuto L, Lesca G, Labalme A, Ville D, Smol T, Rama M, Dieux-Coeslier A, Rivier-Ringenbach C, et al. Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A. 2022;119(15):e2116887119. doi:10.1073/pnas.2116887119
Qu Q, Zhang W, Wang J, Mai D, Ren S, Qu S, Zhang Y. Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis. 2022;13(12):1063. doi:10.1038/s41419-022-05457-6 DOI: https://doi.org/10.1038/s41419-022-05457-6
Cozart MA, Phelan KD, Wu H, Mu S, Birnbaumer L, Rusch NJ, Zheng F. Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus. Sci Rep. 2020;10(1):812. doi:10.1038/s41598-020-57733-0 DOI: https://doi.org/10.1038/s41598-020-57733-0
Fan C, Gao Y, Liang G, Huang L, Wang J, Yang X, Shi Y, Dräger UC, Zhong M, Gao TM, et al. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy. Mol Autism. 2020;11(1):13. doi:10.1186/s13229-020-0318-9 DOI: https://doi.org/10.1186/s13229-020-0318-9
Hu X, Zhao M, Yang X, Wang D, Wu Q. Association between the SLC6A11 rs2304725 and GABRG2 rs211037 polymorphisms and drug-resistant epilepsy: a meta-analysis. Front Physiol. 2023;14:1191927. doi:10.3389/fphys.2023.1191927 DOI: https://doi.org/10.3389/fphys.2023.1191927
Nappi M, Barrese V, Carotenuto L, Lesca G, Labalme A, Ville D, Smol T, Rama M, Dieux-Coeslier A, Rivier-Ringenbach C, et al. Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A. 2022;119(15):e2116887119. doi:10.1073/pnas.2116887119 DOI: https://doi.org/10.1073/pnas.2116887119
Roshandel D, Sanders EJ, Shakeshaft A, Panjwani N, Lin F, Collingwood A, Hall A, Keenan K, Deneubourg C, Mirabella F, et al. SLCO5A1 and synaptic assembly genes contribute to impulsivity in juvenile myoclonic epilepsy. NPJ Genom Med. 2023;8(1):28. doi:10.1038/s41525-023-00370-z DOI: https://doi.org/10.1038/s41525-023-00370-z
Sanlialp M, Dodurga Y, Uludag B, Alihanoglu YI, Enli Y, Secme M, Bostanci HE, Cetin Sanlialp S, Tok OO, Kaftan A, et al. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J Cell Biochem. 2020;121(4):3005-3009. doi:10.1002/jcb.29557 DOI: https://doi.org/10.1002/jcb.29557
Zhang Y, Da Q, Cao S, Yan K, Shi Z, Miao Q, Li C, Hu L, Sun S, Wu W, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144(8):638-654. doi:10.1161/CIRCULATIONAHA.120.051094 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.051094
Hussain S, Khan AW, Akhmedov A, Suades R, Costantino S, Paneni F, Caidahl K, Mohammed SA, Hage C, Gkolfos C, et al. Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circ Res. 2020;127(10):1261-1273. doi:10.1161/CIRCRESAHA.120.317132 DOI: https://doi.org/10.1161/CIRCRESAHA.120.317132
Liu XM, Du SL, Miao R, Wang LF, Zhong JC. Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Fail Rev. 2022;27(1):345-355. doi:10.1007/s10741-020-09992-2 DOI: https://doi.org/10.1007/s10741-020-09992-2
Sağır F, Ersoy Tunalı N, Tombul T, Koral G, Çırak S, Yılmaz V, Türkoğlu R, Tüzün E. miR-132-3p, miR-106b-5p, and miR-19b-3p Are Associated with Brain-Derived Neurotrophic Factor Production and Clinical Activity in Multiple Sclerosis: A Pilot Study. Genet Test Mol Biomarkers. 2021;25(11):720-726. doi:10.1089/gtmb.2021.0183 DOI: https://doi.org/10.1089/gtmb.2021.0183
Nataf S, Guillen M, Pays L. TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. Int J Mol Sci. 2019;20(23):5934. doi:10.3390/ijms20235934 DOI: https://doi.org/10.3390/ijms20235934
Hulshoff MS, Schellinger IN, Xu X, Fledderus J, Rath SK, Wong FC, Maamari S, Haunschild J, Krenning G, Raaz U, et al. miR-132-3p and KLF7 as novel regulators of aortic stiffening-associated EndMT in type 2 diabetes mellitus. Diabetol Metab Syndr. 2023;15(1):11. doi:10.1186/s13098-022-00966-y DOI: https://doi.org/10.1186/s13098-022-00966-y
Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, et al. miR-10b-5p Rescues Diabetes and Gastrointestinal Dysmotility. Gastroenterology. 2021;160(5):1662-1678.e18. doi:10.1053/j.gastro.2020.12.062ax DOI: https://doi.org/10.1053/j.gastro.2020.12.062
Alamro H, Bajic V, Macvanin MT, Isenovic ER, Gojobori T, Essack M, Gao X. Type 2 Diabetes Mellitus and its comorbidity, Alzheimer’s disease: Identifying critical microRNA using machine learning. Front Endocrinol (Lausanne). 2023;13:1084656. doi:10.3389/fendo.2022.1084656 DOI: https://doi.org/10.3389/fendo.2022.1084656
Morales-Sánchez P, Lambert C, Ares-Blanco J, Suárez-Gutiérrez L, Villa-Fernández E, Garcia AV, García-Villarino M, Tejedor JR, Fraga MF, Torre EM, et al. Circulating miRNA expression in long-standing type 1 diabetes mellitus. Sci Rep. 2023;13(1):8611. doi:10.1038/s41598-023-35836-8 DOI: https://doi.org/10.1038/s41598-023-35836-8
Kasimiotis H, Myers MA, Argentaro A, Mertin S, Fida S, Ferraro T, Olsson J, Rowley MJ, Harley VR. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes. 2000;49(4):555-561. doi:10.2337/diabetes.49.4.555 DOI: https://doi.org/10.2337/diabetes.49.4.555
Markowska A, Pawałowska M, Filas V, Korski K, Gryboś M, Sajdak S, Olejek A, Bednarek W, Spiewankiewicz B, Lubin J, et al. Does Metformin affect ER, PR, IGF-1R, β-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer?. Diabetol Metab Syndr. 2013;5(1):76. doi:10.1186/1758-5996-5-76 DOI: https://doi.org/10.1186/1758-5996-5-76
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes. 2021;14:431-442. doi:10.2147/DMSO.S291932 DOI: https://doi.org/10.2147/DMSO.S291932
Dobricic V, Schilling M, Farkas I, Gveric DO, Ohlei O, Schulz J, Middleton L, Gentleman SM, Parkkinen L, Bertram L, et al. Common signatures of differential microRNA expression in Parkinson’s and Alzheimer’s disease brains. Brain Commun. 2022;4(6):fcac274. doi:10.1093/braincomms/fcac274 DOI: https://doi.org/10.1093/braincomms/fcac274
Shibata N, Ohnuma T, Higashi S, Higashi M, Usui C, Ohkubo T, Watanabe T, Kawashima R, Kitajima A, Ueki A, et al. Genetic association between USF 1 and USF 2 gene polymorphisms and Japanese Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2006;61(7):660-662. doi:10.1093/gerona/61.7.660 DOI: https://doi.org/10.1093/gerona/61.7.660
Russo P, Lauria F, Sirangelo I, Siani A, Iacomino G. Association between Urinary AGEs and Circulating miRNAs in Children and Adolescents with Overweight and Obesity from the Italian I. Family Cohort: A Pilot Study. J Clin Med. 2023;12(16):5362. doi:10.3390/jcm12165362 DOI: https://doi.org/10.3390/jcm12165362
Parrillo L, Spinelli R, Costanzo M, Florese P, Cabaro S, Desiderio A, Prevenzano I, Raciti GA, Smith U, Miele C, et al. Epigenetic Dysregulation of the Homeobox A5 (HOXA5) Gene Associates with Subcutaneous Adipocyte Hypertrophy in Human Obesity. Cells. 2022;11(4):728.doi:10.3390/cells11040728 DOI: https://doi.org/10.3390/cells11040728
Özkan G, Ulusoy Ş, Geyik E, Erdem Y. Down-regulation of miRNA 145 and up-regulation of miRNA 4516 may be associated with primary hypertension. J Clin Hypertens (Greenwich). 2019;21(11):1724-1731. doi:10.1111/jch.13704 DOI: https://doi.org/10.1111/jch.13704
Yan L, Cogan JD, Hedges LK, Nunley B, Hamid R, Austin ED. The Y Chromosome Regulates BMPR2 Expression via SRY: A Possible Reason “Why” Fewer Males Develop Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2018;198(12):1581-1583. doi:10.1164/rccm.201802-0308LE DOI: https://doi.org/10.1164/rccm.201802-0308LE
Yang L, Liang H, Shen L, Guan Z, Meng X. LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci. 2019;237:116769. doi:10.1016/j.lfs.2019.116769 DOI: https://doi.org/10.1016/j.lfs.2019.116769
Wu X, Zhang N, Yu J, Liang M, Xu H, Hu J, Lin S, Qiu J, Lin C, Liu W, et al. The underlying mechanism of transcription factor IRF1, PRDM1, and ZNF263 involved in the regulation of NPPB rs3753581 on pulse pressure hypertension. Gene. 2023;878:147580. doi:10.1016/j.gene.2023.147580 DOI: https://doi.org/10.1016/j.gene.2023.147580
Han S, Li Y, Gao J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: expectations from a meta-analysis that combines deep learning methods. World J Biol Psychiatry. 2023;1-17. doi:10.1080/15622975.2023.2258975 DOI: https://doi.org/10.1080/15622975.2023.2258975
Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel). 2022;13(6):1034. doi:10.3390/genes13061034 DOI: https://doi.org/10.3390/genes13061034
Uwatoko H, Hama Y, Iwata IT, Shirai S, Matsushima M, Yabe I, Utsumi J, Sasaki H. Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson’s disease. Mol Brain. 2019;12(1):49. doi:10.1186/s13041-019-0471-2 DOI: https://doi.org/10.1186/s13041-019-0471-2
Lee J, Pinares-Garcia P, Loke H, Ham S, Vilain E, Harley VR. Sex-specific neuroprotection by inhibition of the Y-chromosome gene, SRY, in experimental Parkinson’s disease. Proc Natl Acad Sci U S A. 2019;116(33):16577-16582. doi:10.1073/pnas.1900406116 DOI: https://doi.org/10.1073/pnas.1900406116
Guo S, Yang J, Jiang B, Zhou N, Ding H, Zhou G, Wu S, Suo A, Wu X, Xie W, et al. MicroRNA editing patterns in Huntington’s disease. Sci Rep. 2022;12(1):3173. doi:10.1038/s41598-022-06970-6 DOI: https://doi.org/10.1038/s41598-022-06970-6
Takahashi I, Hama Y, Matsushima M, Hirotani M, Kano T, Hohzen H, Yabe I, Utsumi J, Sasaki H. Identification of plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral Sclerosis. Mol Brain. 2015;8(1):67. doi:10.1186/s13041-015-0161-7 DOI: https://doi.org/10.1186/s13041-015-0161-7

How to Cite

Kotturshetti, I., Vastrad, B., Kori, V., Vastrad, C., & Kotrashetti, S. (2024). Screening of the key genes and signaling pathways for schizophrenia using bioinformatics and next generation sequencing data analysis. Italian Journal of Medicine, 18(4). https://doi.org/10.4081/itjm.2024.1830